Academic literature on the topic 'Forcing theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forcing theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forcing theory"
Zapletal, Jindřich. "Dimension theory and forcing." Topology and its Applications 167 (April 2014): 31–35. http://dx.doi.org/10.1016/j.topol.2014.03.004.
Full textAvigad, Jeremy. "Forcing in Proof Theory." Bulletin of Symbolic Logic 10, no. 3 (September 2004): 305–33. http://dx.doi.org/10.2178/bsl/1102022660.
Full textKomjath, Peter. "Ramsey-Theory and Forcing Extensions." Proceedings of the American Mathematical Society 121, no. 1 (May 1994): 217. http://dx.doi.org/10.2307/2160385.
Full textKomjáth, Péter. "Ramsey theory and forcing extensions." Proceedings of the American Mathematical Society 121, no. 1 (January 1, 1994): 217. http://dx.doi.org/10.1090/s0002-9939-1994-1169039-2.
Full textBaldwin, J. T., M. C. Laskowski, and S. Shelah. "Forcing isomorphism." Journal of Symbolic Logic 58, no. 4 (December 1993): 1291–301. http://dx.doi.org/10.2307/2275144.
Full textZapletal, Jindřich. "Descriptive set theory and definable forcing." Memoirs of the American Mathematical Society 167, no. 793 (2004): 0. http://dx.doi.org/10.1090/memo/0793.
Full textSpinas, O. "Iterated forcing in quadratic form theory." Israel Journal of Mathematics 79, no. 2-3 (October 1992): 297–315. http://dx.doi.org/10.1007/bf02808222.
Full textKrueger, John, and Miguel Angel Mota. "Coherent adequate forcing and preserving CH." Journal of Mathematical Logic 15, no. 02 (December 2015): 1550005. http://dx.doi.org/10.1142/s0219061315500051.
Full textViale, Matteo. "Category forcings, ${MM}^{+++}$, and generic absoluteness for the theory of strong forcing axioms." Journal of the American Mathematical Society 29, no. 3 (August 19, 2015): 675–728. http://dx.doi.org/10.1090/jams/844.
Full textHenderson, G. H., and S. Fleeter. "Forcing Function Effects on Unsteady Aerodynamic Gust Response: Part 1—Forcing Functions." Journal of Turbomachinery 115, no. 4 (October 1, 1993): 741–50. http://dx.doi.org/10.1115/1.2929309.
Full textDissertations / Theses on the topic "Forcing theory"
García, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.
Full textAquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
Owens, Kayla Denise. "Properties of the Zero Forcing Number." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2216.
Full textSchuerger, Houston S. "Contributions to Geometry and Graph Theory." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707341/.
Full textPoveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.
Full textEl-Sharif, Najla Saleh Ahmed. "Second-order methods for some nonlinear second-order initial-value problems with forcing." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309501.
Full textLambie-Hanson, Christopher. "Covering Matrices, Squares, Scales, and Stationary Reflection." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/368.
Full textZhang, Yanyan. "Periodic Forcing of a System near a Hopf Bifurcation Point." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291174795.
Full textZimmermann, Urs [Verfasser]. "Colloids in Non-Equilibrium: Dynamical Density Functional Theory of Colloidal Suspensions under External Forcing / Urs Zimmermann." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2018. http://d-nb.info/1151698288/34.
Full textJaber, Guilhem. "A logical study of program equivalence." Thesis, Nantes, Ecole des Mines, 2014. http://www.theses.fr/2014EMNA0124/document.
Full textProving program equivalence for a functional language with references is a notoriously difficult problem. The goal of this thesis is to propose a logical system in which such proofs can be formalized, and in some cases inferred automatically. In the first part, a generic extension method of dependent type theory is proposed, based on a forcing interpretation seen as a presheaf translation of type theory. This extension equips type theory with guarded recursive constructions, which are subsequently used to reason on higher-order references. In the second part, we define a nominal game semantics for a language with higher-order references. It marries the categorical structure of game semantics with a trace representation of denotations of programs, which can be computed operationally and thus have good modularity properties. Using this semantics, we can prove the completeness of Kripke logical relations defined in a direct way, using guarded recursive types, without using biorthogonality. Such a direct definition requires omniscient worlds and a fine control of disclosed locations. Finally, we introduce a temporal logic which gives a framework to define these Kripke logical relations. The problem of contextual equivalence is then reduced to the satisfiability of an automatically generated formula defined in this logic, i.e. to the existence of a world validating this formula. Under some conditions, this satisfiability can be decided using a SMT solver. Completeness of our methods opens the possibility of getting decidability results of contextual equivalence for some fragments of the language, by giving an algorithm to build such worlds
Sexton, William Nelson. "The Minimum Rank of Schemes on Graphs." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4402.
Full textBooks on the topic "Forcing theory"
Zapletal, Jindřich. Forcing idealized. Cambridge: Cambridge University Press, 2008.
Find full textMiller, Arnold W. Descriptive Set Theory and Forcing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3.
Full textTodorcevic, Stevo. Some applications of the method of forcing. Moscow: Yenisei, 1995.
Find full textWoodin, W. H. The axiom of determinacy, forcing axioms, and the nonstationary ideal. 2nd ed. Berlin: De Gruyter, 2010.
Find full textRosłanowski, Andrzej. Norms on possibilities I: Forcing with trees and creatures. Providence, R.I: American Mathematical Society, 1999.
Find full textThe axiom of determinacy, forcing axioms, and the nonstationary ideal. Berlin: W. de Gruyter, 1999.
Find full textEmergence vs forcing: Basics of grounded theory analysis. Mill Valley, CA: Sociology Press, 1992.
Find full textGlaser, Barney G. Basics of grounded theory analysis: Emergence vs. forcing. Mill Valley, CA: Sociology Press, 1992.
Find full textBook chapters on the topic "Forcing theory"
Schindler, Ralf. "Forcing." In Set Theory, 93–126. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06725-4_6.
Full textBurke, Maxim R. "Forcing Axioms." In Set Theory, 1–21. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8988-8_1.
Full textAbraham, Uri. "Proper Forcing." In Handbook of Set Theory, 333–94. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_6.
Full textMiller, Arnold W. "α-forcing." In Descriptive Set Theory and Forcing, 21–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3_7.
Full textJech, Thomas. "Forcing and Generic Models." In Set Theory, 137–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22400-7_3.
Full textJech, Thomas. "Some Applications of Forcing." In Set Theory, 216–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22400-7_4.
Full textCoquand, Thierry. "Forcing and Type Theory." In Computer Science Logic, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04027-6_2.
Full textGoldstern, Martin. "A Taste of Proper Forcing." In Set Theory, 71–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8988-8_5.
Full textFriedman, Sy D. "Constructibility and Class Forcing." In Handbook of Set Theory, 557–604. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_9.
Full textAntos, Carolin. "Class Forcing in Class Theory." In The Hyperuniverse Project and Maximality, 1–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62935-3_1.
Full textConference papers on the topic "Forcing theory"
Jaber, Guilhem, Nicolas Tabareau, and Matthieu Sozeau. "Extending Type Theory with Forcing." In 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012). IEEE, 2012. http://dx.doi.org/10.1109/lics.2012.49.
Full textNtranos, Vasilis, Viveck R. Cadambe, Bobak Nazer, and Giuseppe Caire. "Integer-forcing interference alignment." In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620291.
Full textOrdentlich, Or, and Uri Erez. "Integer-Forcing source coding." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6874819.
Full textZhan, Jiening, Bobak Nazer, Uri Erez, and Michael Gastpar. "Integer-forcing linear receivers." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513734.
Full textHasan, Mohammad Nur, Brian M. Kurkoski, Amin Sakzad, and Emanuele Viterbo. "Orthogonal Precoder for Integer-Forcing MIMO." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849336.
Full textZhan, Jiening, Uri Erez, Michael Gastpar, and Bobak Nazer. "Mitigating interference with integer-forcing architectures." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033830.
Full textHe, Wenbo, Bobak Nazer, and Shlomo Shamai. "Uplink-downlink duality for integer-forcing." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875293.
Full textDomanovitz, Elad, and Uri Erez. "Outage probability bounds for integer-forcing source coding." In 2017 IEEE Information Theory Workshop (ITW). IEEE, 2017. http://dx.doi.org/10.1109/itw.2017.8277959.
Full textSakzad, Amin, and Emanuele Viterbo. "Unitary precoding for integer-forcing MIMO linear receivers." In 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970836.
Full textAldroubi, Akram, and Keri Kornelson. "Dynamical sampling with an additive forcing term." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148928.
Full textReports on the topic "Forcing theory"
Zhang, Minghua. Development of Integrated ASR Model Forcing Data and Their Applications to Improve CAM. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1233588.
Full textVélez-Velásquez, Juan Sebastián. Banning Price Discrimination under Imperfect Competition: Evidence from Colombia's Broadband. Banco de la República de Colombia, December 2020. http://dx.doi.org/10.32468/be.1148.
Full textHara, Tetsu. Statistical Characteristics of Small Scale Wind-waves and Their Modulation by Longer Gravity Waves and Atmospheric Forcing. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627814.
Full textGoldemberg, Diana, James Genone, and Scott Wisor. How Do Disruptive Innovators Prepare Today's Students to Be Tomorrow's Workforce?: Minerva's Co-op Model: A Pathway to Closing the Skills Gap. Inter-American Development Bank, September 2020. http://dx.doi.org/10.18235/0002633.
Full textPradeep Kumar, Kaavya. Climate Change Glossary. Indian Institute for Human Settlements, 2021. http://dx.doi.org/10.24943/ccgemthk02.2021.
Full textBauer, Andrew, James Forsythe, Jayanarayanan Sitaraman, Andrew Wissink, Buvana Jayaraman, and Robert Haehnel. In situ analysis and visualization to enable better workflows with CREATE-AV™ Helios. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40846.
Full text