Academic literature on the topic 'Forcing theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forcing theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Forcing theory"

1

Zapletal, Jindřich. "Dimension theory and forcing." Topology and its Applications 167 (April 2014): 31–35. http://dx.doi.org/10.1016/j.topol.2014.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Avigad, Jeremy. "Forcing in Proof Theory." Bulletin of Symbolic Logic 10, no. 3 (September 2004): 305–33. http://dx.doi.org/10.2178/bsl/1102022660.

Full text
Abstract:
AbstractPaul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects of forcing that are useful in this respect, and some sample applications. The latter include ways of obtaining conservation results for classical and intuitionistic theories, interpreting classical theories in constructive ones, and constructivizing model-theoretic arguments.
APA, Harvard, Vancouver, ISO, and other styles
3

Komjath, Peter. "Ramsey-Theory and Forcing Extensions." Proceedings of the American Mathematical Society 121, no. 1 (May 1994): 217. http://dx.doi.org/10.2307/2160385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Komjáth, Péter. "Ramsey theory and forcing extensions." Proceedings of the American Mathematical Society 121, no. 1 (January 1, 1994): 217. http://dx.doi.org/10.1090/s0002-9939-1994-1169039-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baldwin, J. T., M. C. Laskowski, and S. Shelah. "Forcing isomorphism." Journal of Symbolic Logic 58, no. 4 (December 1993): 1291–301. http://dx.doi.org/10.2307/2275144.

Full text
Abstract:
If two models of a first-order theory are isomorphic, then they remain isomorphic in any forcing extension of the universe of sets. In general however, such a forcing extension may create new isomorphisms. For example, any forcing that collapses cardinals may easily make formerly nonisomorphic models isomorphic. However, if we place restrictions on the partially-ordered set to ensure that the forcing extension preserves certain invariants, then the ability to force nonisomorphic models of some theory T to be isomorphic implies that the invariants are not sufficient to characterize the models of T.A countable first-order theory is said to be classifiable if it is superstable and does not have either the dimensional order property (DOP) or the omitting types order property (OTOP). If T is not classifiable, Shelah has shown in [5] that sentences in L∞,λ do not characterize models of T of power λ. By contrast, in [8] Shelah showed that if a theory T is classifiable, then each model of cardinality λ is described by a sentence of L∞,λ. In fact, this sentence can be chosen in the . ( is the result of enriching the language by adding for each μ < λ a quantifier saying the dimension of a dependence structure is greater than μ) Further work ([3], [2]) shows that ⊐+ can be replaced by ℵ1.
APA, Harvard, Vancouver, ISO, and other styles
6

Zapletal, Jindřich. "Descriptive set theory and definable forcing." Memoirs of the American Mathematical Society 167, no. 793 (2004): 0. http://dx.doi.org/10.1090/memo/0793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spinas, O. "Iterated forcing in quadratic form theory." Israel Journal of Mathematics 79, no. 2-3 (October 1992): 297–315. http://dx.doi.org/10.1007/bf02808222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krueger, John, and Miguel Angel Mota. "Coherent adequate forcing and preserving CH." Journal of Mathematical Logic 15, no. 02 (December 2015): 1550005. http://dx.doi.org/10.1142/s0219061315500051.

Full text
Abstract:
We develop a general framework for forcing with coherent adequate sets on [Formula: see text] as side conditions, where [Formula: see text] is a cardinal of uncountable cofinality. We describe a class of forcing posets which we call coherent adequate type forcings. The main theorem of the paper is that any coherent adequate type forcing preserves CH. We show that there exists a forcing poset for adding a club subset of [Formula: see text] with finite conditions while preserving CH, solving a problem of Friedman [Forcing with finite conditions, in Set Theory: Centre de Recerca Matemática, Barcelona, 2003–2004, Trends in Mathematics (Birkhäuser-Verlag, 2006), pp. 285–295.].
APA, Harvard, Vancouver, ISO, and other styles
9

Viale, Matteo. "Category forcings, ${MM}^{+++}$, and generic absoluteness for the theory of strong forcing axioms." Journal of the American Mathematical Society 29, no. 3 (August 19, 2015): 675–728. http://dx.doi.org/10.1090/jams/844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henderson, G. H., and S. Fleeter. "Forcing Function Effects on Unsteady Aerodynamic Gust Response: Part 1—Forcing Functions." Journal of Turbomachinery 115, no. 4 (October 1, 1993): 741–50. http://dx.doi.org/10.1115/1.2929309.

Full text
Abstract:
The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades. In this paper, the measured unsteady flow fields are compared to linear-theory vortical gust requirements, with the resulting unsteady gust response of a downstream stator cascade correlated with linear theory predictions in an accompanying paper. The perforated-plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. In contrast, the airfoil forcing functions exhibit characteristics far from linear-theory vortical gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. Thus, these unique data clearly show that airfoil wakes, both compressor and turbine, are not able to be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Forcing theory"

1

García, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.

Full text
Abstract:
This is a contribution to combinatorial set theory, specifically to infinite Ramsey Theory, which deals with partitions of infinite sets. The basic pigeon hole principle states that for every partition of the set of all natural numbers in finitely many classes there is an infinite set of natural numbers that is included in some one class. Ramsey’s Theorem, which can be seen as a generalization of this simple result, is about partitions of the set [N]k of all k-element sets of natural numbers. It states that for every k ≥ 1 and every partition of [N]k into finitely many classes, there is an infinite subset M of N such that all k-element subsets of M belong to some same class. Such a set is said to be homogeneous for the partition. In Ramsey’s own formulation (Ramsey, [8], p.264), the theorem reads as follows. Theorem (Ramsey). Let Γ be an infinite class, and μ and r positive numbers; and let all those sub-classes of Γ which have exactly r numbers, or, as we may say, let all r−combinations of the members of Γ be divided in any manner into μ mutually exclusive classes Ci (i = 1, 2, . . . , μ), so that every r−combination is a member of one and only one Ci; then assuming the axiom of selections, Γ must contain an infinite sub-class △ such that all the r−combinations of the members of △ belong to the same Ci. In [5], Neil Hindman proved a Ramsey-like result that was conjectured by Graham and Rotschild in [3]. Hindman’s Theorem asserts that if the set of all natural numbers is divided into two classes, one of the classes contains an infinite set such that all finite sums of distinct members of the set remain in the same class. Hindman’s original proof was greatly simplified, though the same basic ideas were used, by James Baumgartner in [1]. We will give new proofs of these two theorems which rely on forcing arguments. After this, we will be concerned with the particular partial orders used in each case, with the aim of studying its basic properties and its relations to other similar forcing notions. The partial order used to get Ramsey’s Theorem will be seen to be equivalent to Mathias forcing. The analysis of the partial order arising in the proof of Hindmans Theorem, which we denote by PFIN, will be object of the last chapter of the thesis. A summary of our work follows. In the first chapter we give some basic definitions and state several known theorems that we will need. We explain the set theoretic notation used and we describe some forcing notions that will be useful in the sequel. Our notation is generally standard, and when it is not it will be sufficiently explained. This work is meant to be self-contained. Thus, although most of the theorems recorded in this first, preliminary chapter, will be stated without proof, it will be duly indicated where a proof can be found. Chapter 2 is devoted to a proof of Ramsey’s Theorem in which forcing is used to produce a homogeneous set for the relevant partition. The partial order involved is isomorphic to Mathias forcing. In Chapter 3 we modify Baumgartner’s proof of Hindman’s Theorem to define a partial order, denoted by PC , from which we get by a forcing argument a suitable homogeneous set. Here C is an infinite set of finite subsets of N, and PC adds an infinite block sequence of finite subsets of natural numbers with the property that all finite unions of its elements belong to C. Our proof follows closely Baumgartner’s. The partial order PC is similar both to the one due to Matet in [6] and to Mathias forcing. This prompts the question whether it is equivalent to one of them or to none, which can only be solved by studying PC , which we do in chapter 4. In chapter 4 we first show that the forcing notion PC is equivalent to a more manageable partial order, which we denote by PFIN. From a PFIN- generic filter an infinite block sequence can be defined, from which, in turn, the generic filter can be reconstructed, roughly as a Mathias generic filter can be reconstructed from a Mathias real. In section 4.1 we prove that PFIN is not equivalent to Matet forcing. This we do by showing that PFIN adds a dominating real, thus also a splitting real (see [4]). But Blass proved that Matet forcing preserves p-point ultrafilters in [2], from which follows that Matet forcing does not add splitting reals. Still in section 4.1 we prove that PFIN adds a Mathias real by using Mathias characterization of a Mathias real in [7] according to which x ⊆ ω is a Mathias real over V iff x diagonalizes every maximal almost disjoint family in V . In fact, we prove that if D = (Di)i∈ω is the generic block sequence of finite sets of natural numbers added by forcing with PFIN, then both {minDi : i ∈ ω} and {maxDi : i ∈ ω} are Mathias reals. In section 4.2 we prove that PFIN is equivalent to a two-step iteration of a σ-closed and a σ-centered forcing notions. In section 4.3 we prove that PFIN satisfies Axiom A and in section 4.4 that, as Mathias forcing, it has the pure decision property. In section 4.5 we prove that PFIN does not add Cohen reals. So far, all the properties we have found of PFIN are also shared by Mathias forcing. The question remains, then, whether PFIN is equivalent to Mathias forcing. This we solve by first showing in section 5.1 that PFIN adds a Matet real and then, in section 5.2, that Mathias forcing does not add a Matet real, thus concluding that PFIN and Mathias forcing are not equivalent forcing notions. In the last, 5.3, section we explore another forcing notion, denoted by M2, which was introduced by Shelah in [9]. It is a kind of “product” of two copies of Mathias forcing, which we relate to denoted by M2. Bibliography [1] J.E. Baumgartner. A short proof of Hindmanʼs theorem. Journal of Combinatorial Theory, 17:384–386, 1974. [2] A. Blass. Applications of superperfect forcing and its relatives. In Set theory and its applications. Lecture notes in Mathematics. Springer, Berlin., 1989. [3] R.L. Graham and B. L. Rothschild. Ramseyʼs theorem for n-parameter sets. Transaction American Mathematical Society, 159:257–292, 1971. [4] L. Halbeisen. A playful approach to Silver and Mathias forcing. Studies in Logic (London), 11:123142, 2007. [5] N. Hindman. Finite sums from sequences within cells of partition of N. Journal of Combinatorial Theory (A), 17:1–11, 1974. [6] P. Matet. Some filters of partitions. The Journal of Symbolic Logic, 53:540– 553, 1988. [7] A.R.D. Mathias. Happy families. Annals of Mathematical logic, 12:59– 111, 1977. [8] F.P. Ramsey. On a problem of formal logic. London Mathematical Society, 30:264–286, 1930. [9] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(ω)/fin. Fundamenta Mathematicae, 158:81–93, 1998.
Aquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
APA, Harvard, Vancouver, ISO, and other styles
2

Owens, Kayla Denise. "Properties of the Zero Forcing Number." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2216.

Full text
Abstract:
The zero forcing number is a graph parameter first introduced as a tool for solving the minimum rank problem, which is: Given a simple, undirected graph G, and a field F, let S(F,G) denote the set of all symmetric matrices A=[a_{ij}] with entries in F such that a_{ij} doess not equal 0 if and only if ij is an edge in G. Find the minimum possible rank of a matrix in S(F,G). It is known that the zero forcing number Z(G) provides an upper bound for the maximum nullity of a graph. I investigate properties of the zero forcing number, including its behavior under various graph operations.
APA, Harvard, Vancouver, ISO, and other styles
3

Schuerger, Houston S. "Contributions to Geometry and Graph Theory." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707341/.

Full text
Abstract:
In geometry we will consider n-dimensional generalizations of the Power of a Point Theorem and of Pascal's Hexagon Theorem. In generalizing the Power of a Point Theorem, we will consider collections of cones determined by the intersections of an (n-1)-sphere and a pair of hyperplanes. We will then use these constructions to produce an n-dimensional generalization of Pascal's Hexagon Theorem, a classical plane geometry result which states that "Given a hexagon inscribed in a conic section, the three pairs of continuations of opposite sides meet on a straight line." Our generalization of this theorem will consider a pair of n-simplices intersecting an (n-1)-sphere, and will conclude with the intersections of corresponding faces lying in a hyperplane. In graph theory we will explore the interaction between zero forcing and cut-sets. The color change rule which lies at the center of zero forcing says "Suppose that each of the vertices of a graph are colored either blue or white. If u is a blue vertex and v is its only white neighbor, then u can force v to change to blue." The concept of zero forcing was introduced by the AIM Minimum Rank - Special Graphs Work Group in 2007 as a way of determining bounds on the minimum rank of graphs. Later, Darren Row established results concerning the zero forcing numbers of graphs with a cut-vertex. We will extend his work by considering graphs with arbitrarily large cut-sets, and the collections of components they yield, to determine results for the zero forcing numbers of these graphs.
APA, Harvard, Vancouver, ISO, and other styles
4

Poveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.

Full text
Abstract:
The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl(La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl(
APA, Harvard, Vancouver, ISO, and other styles
5

El-Sharif, Najla Saleh Ahmed. "Second-order methods for some nonlinear second-order initial-value problems with forcing." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lambie-Hanson, Christopher. "Covering Matrices, Squares, Scales, and Stationary Reflection." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/368.

Full text
Abstract:
In this thesis, we present a number of results in set theory, particularly in the areas of forcing, large cardinals, and combinatorial set theory. Chapter 2 concerns covering matrices, combinatorial structures introduced by Viale in his proof that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. In the course of this proof and subsequent work with Sharon, Viale isolated two reflection principles, CP and S, which can hold of covering matrices. We investigate covering matrices for which CP and S fail and prove some results about the connections between such covering matrices and various square principles. In Chapter 3, motivated by the results of Chapter 2, we introduce a number of square principles intermediate between the classical and (+). We provide a detailed picture of the implications and independence results which exist between these principles when is regular. In Chapter 4, we address three questions raised by Cummings and Foreman regarding a model of Gitik and Sharon. We first analyze the PCF-theoretic structure of the Gitik-Sharon model, determining the extent of good and bad scales. We then classify the bad points of the bad scales existing in both the Gitik-Sharon model and various other models containing bad scales. Finally, we investigate the ideal of subsets of singular cardinals of countable cofinality carrying good scales. In Chapter 5, we prove that, assuming large cardinals, it is consistent that there are many singular cardinals such that every stationary subset of + reflects but there are stationary subsets of + that do not reflect at ordinals of arbitrarily high cofinality. This answers a question raised by Todd Eisworth and is joint work with James Cummings. In Chapter 6, we extend a result of Gitik, Kanovei, and Koepke regarding intermediate models of Prikry-generic forcing extensions to Radin generic forcing extensions. Specifically, we characterize intermediate models of forcing extensions by Radin forcing at a large cardinal using measure sequences of length less than. In the final brief chapter, we prove some results about iterations of w1-Cohen forcing with w1-support, answering a question of Justin Moore.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Yanyan. "Periodic Forcing of a System near a Hopf Bifurcation Point." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291174795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimmermann, Urs [Verfasser]. "Colloids in Non-Equilibrium: Dynamical Density Functional Theory of Colloidal Suspensions under External Forcing / Urs Zimmermann." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2018. http://d-nb.info/1151698288/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaber, Guilhem. "A logical study of program equivalence." Thesis, Nantes, Ecole des Mines, 2014. http://www.theses.fr/2014EMNA0124/document.

Full text
Abstract:
Prouver l’équivalence de programmes écrits dans un langage fonctionnel avec références est un problème notoirement difficile. L’objectif de cette thèse est de proposer un système logique dans lequel de telles preuves peuvent être formalisées, et dans certains cas inférées automatiquement. Dans la première partie, une méthode générique d’extension de la théorie des types dépendants est proposée, basée sur une interprétation du forcing vu comme une traduction de préfaisceaux de la théorie des types. Cette extension dote la théorie des types de constructions récursives gardées, qui sont utilisées ensuite pour raisonner sur les références d’ordre supérieure. Dans une deuxième partie, nous définissons une sémantique des jeux nominale opérationnelle pour un langage avec références d’ordre supérieur. Elle marie la structure catégorique de la sémantique des jeux avec une représentation sous forme de traces de la dénotation des programmes, qui se calcule de manière opérationnelle et dispose donc de bonnes propriétés de modularité. Cette sémantique nous permet ensuite de prouver la complétude de relations logiques à la Kripke définit de manière directe, via l’utilisation de types récursifs gardés, sans utilisation de la biorthogonalité. Une telle définition directe nécessite l’utilisation de mondes omniscient et un contrôle fin des locations divulguées. Finalement, nous introduisons une logique temporelle qui donne un cadre pour définir ces relations logiques à la Kripke. Nous ramenons alors le problème de l’équivalence contextuelle à la satisfiabilité d’une formule de cette logique générée automatique, c’est à dire à l’existence d’un monde validant cette formule. Sous certaines conditions, cette satisfiabilité peut être décidée via l’utilisation d’un solveur SMT. La complétude de notre méthode devrait permettre d’obtenir des résultats de décidabilité pour l’équivalence contextuelle de certains fragment du langage considéré, en fournissant un algorithme pour construire de tels mondes
Proving program equivalence for a functional language with references is a notoriously difficult problem. The goal of this thesis is to propose a logical system in which such proofs can be formalized, and in some cases inferred automatically. In the first part, a generic extension method of dependent type theory is proposed, based on a forcing interpretation seen as a presheaf translation of type theory. This extension equips type theory with guarded recursive constructions, which are subsequently used to reason on higher-order references. In the second part, we define a nominal game semantics for a language with higher-order references. It marries the categorical structure of game semantics with a trace representation of denotations of programs, which can be computed operationally and thus have good modularity properties. Using this semantics, we can prove the completeness of Kripke logical relations defined in a direct way, using guarded recursive types, without using biorthogonality. Such a direct definition requires omniscient worlds and a fine control of disclosed locations. Finally, we introduce a temporal logic which gives a framework to define these Kripke logical relations. The problem of contextual equivalence is then reduced to the satisfiability of an automatically generated formula defined in this logic, i.e. to the existence of a world validating this formula. Under some conditions, this satisfiability can be decided using a SMT solver. Completeness of our methods opens the possibility of getting decidability results of contextual equivalence for some fragments of the language, by giving an algorithm to build such worlds
APA, Harvard, Vancouver, ISO, and other styles
10

Sexton, William Nelson. "The Minimum Rank of Schemes on Graphs." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4402.

Full text
Abstract:
Let G be an undirected graph on n vertices and let S(G) be the class of all real-valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let V = {1, 2, . . . , n} be the vertex set of G. A scheme on G is a function f : V → {0, 1}. Given a scheme f on G, there is an associated class of matrices Sf (G) = {A ∈ S(G)|aii = 0 if and only if f(i) = 0}. A scheme f is said to be constructible if there exists a matrix A ∈ Sf (G) with rank A = min{rank M|M ∈ S(G)}. We explore properties of constructible schemes and give a complete classification of which schemes are constructible for paths and cycles. We also consider schemes on complete graphs and show the existence of a graph for which every possible scheme is constructible.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Forcing theory"

1

Multiple forcing. Cambridge [Cambridgeshire]: Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zapletal, Jindřich. Forcing idealized. Cambridge: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saharon, Shelah, ed. Proper and improper forcing. 2nd ed. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, Arnold W. Descriptive Set Theory and Forcing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Todorcevic, Stevo. Some applications of the method of forcing. Moscow: Yenisei, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Woodin, W. H. The axiom of determinacy, forcing axioms, and the nonstationary ideal. 2nd ed. Berlin: De Gruyter, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rosłanowski, Andrzej. Norms on possibilities I: Forcing with trees and creatures. Providence, R.I: American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

The axiom of determinacy, forcing axioms, and the nonstationary ideal. Berlin: W. de Gruyter, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Emergence vs forcing: Basics of grounded theory analysis. Mill Valley, CA: Sociology Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Glaser, Barney G. Basics of grounded theory analysis: Emergence vs. forcing. Mill Valley, CA: Sociology Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Forcing theory"

1

Schindler, Ralf. "Forcing." In Set Theory, 93–126. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06725-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, Maxim R. "Forcing Axioms." In Set Theory, 1–21. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8988-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abraham, Uri. "Proper Forcing." In Handbook of Set Theory, 333–94. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, Arnold W. "α-forcing." In Descriptive Set Theory and Forcing, 21–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-21773-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jech, Thomas. "Forcing and Generic Models." In Set Theory, 137–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22400-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jech, Thomas. "Some Applications of Forcing." In Set Theory, 216–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-22400-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coquand, Thierry. "Forcing and Type Theory." In Computer Science Logic, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04027-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goldstern, Martin. "A Taste of Proper Forcing." In Set Theory, 71–82. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8988-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Friedman, Sy D. "Constructibility and Class Forcing." In Handbook of Set Theory, 557–604. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Antos, Carolin. "Class Forcing in Class Theory." In The Hyperuniverse Project and Maximality, 1–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62935-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Forcing theory"

1

Jaber, Guilhem, Nicolas Tabareau, and Matthieu Sozeau. "Extending Type Theory with Forcing." In 2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012). IEEE, 2012. http://dx.doi.org/10.1109/lics.2012.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ntranos, Vasilis, Viveck R. Cadambe, Bobak Nazer, and Giuseppe Caire. "Integer-forcing interference alignment." In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ordentlich, Or, and Uri Erez. "Integer-Forcing source coding." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6874819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhan, Jiening, Bobak Nazer, Uri Erez, and Michael Gastpar. "Integer-forcing linear receivers." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hasan, Mohammad Nur, Brian M. Kurkoski, Amin Sakzad, and Emanuele Viterbo. "Orthogonal Precoder for Integer-Forcing MIMO." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhan, Jiening, Uri Erez, Michael Gastpar, and Bobak Nazer. "Mitigating interference with integer-forcing architectures." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6033830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

He, Wenbo, Bobak Nazer, and Shlomo Shamai. "Uplink-downlink duality for integer-forcing." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Domanovitz, Elad, and Uri Erez. "Outage probability bounds for integer-forcing source coding." In 2017 IEEE Information Theory Workshop (ITW). IEEE, 2017. http://dx.doi.org/10.1109/itw.2017.8277959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sakzad, Amin, and Emanuele Viterbo. "Unitary precoding for integer-forcing MIMO linear receivers." In 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aldroubi, Akram, and Keri Kornelson. "Dynamical sampling with an additive forcing term." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148928.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Forcing theory"

1

Zhang, Minghua. Development of Integrated ASR Model Forcing Data and Their Applications to Improve CAM. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1233588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vélez-Velásquez, Juan Sebastián. Banning Price Discrimination under Imperfect Competition: Evidence from Colombia's Broadband. Banco de la República de Colombia, December 2020. http://dx.doi.org/10.32468/be.1148.

Full text
Abstract:
Economic theory is inconclusive regarding the effects of banning third-degree price discrimination under imperfect competition because they depend on how the competing firms rank their market segments. When, relative to uniform pricing, all competitors want higher prices in the same market segments, a ban on price discrimination will reduce profits and benefit some consumers at the expense of others. If, instead, some firms want to charge higher prices in segments where their competitors want to charge lower prices, price discrimination increases competition driving all prices down. In this case, forcing the firms to charge uniform prices can increase their profits and reduce consumer surplus. We use data on Colombian broadband subscriptions to estimate the demand for internet services. Estimated preferences and assumptions about competition are used to simulate a scenario in which firms lose their ability to price discriminate. Our results show large effects on consumer surplus and large effects on firms’ profits. Aggregate profits increase but the effects for individual firms are heterogeneous. The effects on consumer welfare vary by city. In most cities, a uniform price regime causes large welfare transfers from low-income households towards high-income households and in a few cities, prices in all segments rise. Poorer households respond to the increase in prices by subscribing to internet plans with slower download speed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hara, Tetsu. Statistical Characteristics of Small Scale Wind-waves and Their Modulation by Longer Gravity Waves and Atmospheric Forcing. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goldemberg, Diana, James Genone, and Scott Wisor. How Do Disruptive Innovators Prepare Today's Students to Be Tomorrow's Workforce?: Minerva's Co-op Model: A Pathway to Closing the Skills Gap. Inter-American Development Bank, September 2020. http://dx.doi.org/10.18235/0002633.

Full text
Abstract:
Bridging the skills gap is necessary to increase productivity and equity. In Latin America and the Caribbean, this challenge has manifested in high rates of youth unemployment, informality, and inactivity. Traditional higher education has struggled to respond to this challenge, with rising costs limiting access and poor outcomes forcing students to question the value of a university degree. In this paper, we explore a model for collaboration between higher education providers and employers designed to overcome these challenges. In this co-op model, students earn a bachelors degree in three years, while also working part-time during the second and third years. This model provides students with the foundational skills and knowledge needed to become broad, interdisciplinary thinkers, while also giving them valuable work experience for which they earn credit while pursuing their degree. Economic constraints are addressed by students degrees being partly subsidized by an employer, who benefits by easily hiring employees who can fill their most critical human resource needs.
APA, Harvard, Vancouver, ISO, and other styles
5

Pradeep Kumar, Kaavya. Climate Change Glossary. Indian Institute for Human Settlements, 2021. http://dx.doi.org/10.24943/ccgemthk02.2021.

Full text
Abstract:
Climate change is a complex subject with terms and definitions that can seem overwhelming to non-specialists. What is ‘albedo’? What does ‘radiative forcing’ mean? What does ‘geoengineering’ entail? As climate change impacts grow more frequent and intense, it is critical that journalists, in particular, are equipped with the right information when they report. This set of open-access multilingual glossaries aim to bridge the gap between research and the general public by compiling this comprehensive list of most frequently-used terms related to climate change. A majority of these terms have been sourced from the different IPCC reports as well as public platforms such as the BBC and the Climate Reality Project.
APA, Harvard, Vancouver, ISO, and other styles
6

Bauer, Andrew, James Forsythe, Jayanarayanan Sitaraman, Andrew Wissink, Buvana Jayaraman, and Robert Haehnel. In situ analysis and visualization to enable better workflows with CREATE-AV™ Helios. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40846.

Full text
Abstract:
The CREATE-AV™ Helios CFD simulation code has been used to accurately predict rotorcraft performance under a variety of flight conditions. The Helios package contains a suite of tools that contain almost the entire set of functionality needed for a variety of workflows. These workflows include tools customized to properly specify many in situ analysis and visualization capabilities appropriate for rotorcraft analysis. In situ is the process of computing analysis and visualization information during a simulation run before data is saved to disk. In situ has been referred to with a variety of terms including co-processing, covisualization, coviz, etc. In this paper we describe the customization of the pre-processing GUI and corresponding development of the Helios solver code-base to effectively implement in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts. We showcase how the workflow enables the wide variety of Helios users to effectively work in post-processing tools they are already familiar with as opposed to forcing them to learn new tools in order post-process in situ data extracts being produced by Helios. These data extracts include various sources of information customized to Helios, such as knowledge about the near- and off-body grids, internal surface extracts with patch information, and volumetric extracts meant for fast post-processing of data. Additionally, we demonstrate how in situ can be used by workflow automation tools to help convey information to the user that would be much more difficult when using full data dumps.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!