To see the other types of publications on this topic, follow the link: Forcing theory.

Dissertations / Theses on the topic 'Forcing theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 27 dissertations / theses for your research on the topic 'Forcing theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

García, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.

Full text
Abstract:
This is a contribution to combinatorial set theory, specifically to infinite Ramsey Theory, which deals with partitions of infinite sets. The basic pigeon hole principle states that for every partition of the set of all natural numbers in finitely many classes there is an infinite set of natural numbers that is included in some one class. Ramsey’s Theorem, which can be seen as a generalization of this simple result, is about partitions of the set [N]k of all k-element sets of natural numbers. It states that for every k ≥ 1 and every partition of [N]k into finitely many classes, there is an infinite subset M of N such that all k-element subsets of M belong to some same class. Such a set is said to be homogeneous for the partition. In Ramsey’s own formulation (Ramsey, [8], p.264), the theorem reads as follows. Theorem (Ramsey). Let Γ be an infinite class, and μ and r positive numbers; and let all those sub-classes of Γ which have exactly r numbers, or, as we may say, let all r−combinations of the members of Γ be divided in any manner into μ mutually exclusive classes Ci (i = 1, 2, . . . , μ), so that every r−combination is a member of one and only one Ci; then assuming the axiom of selections, Γ must contain an infinite sub-class △ such that all the r−combinations of the members of △ belong to the same Ci. In [5], Neil Hindman proved a Ramsey-like result that was conjectured by Graham and Rotschild in [3]. Hindman’s Theorem asserts that if the set of all natural numbers is divided into two classes, one of the classes contains an infinite set such that all finite sums of distinct members of the set remain in the same class. Hindman’s original proof was greatly simplified, though the same basic ideas were used, by James Baumgartner in [1]. We will give new proofs of these two theorems which rely on forcing arguments. After this, we will be concerned with the particular partial orders used in each case, with the aim of studying its basic properties and its relations to other similar forcing notions. The partial order used to get Ramsey’s Theorem will be seen to be equivalent to Mathias forcing. The analysis of the partial order arising in the proof of Hindmans Theorem, which we denote by PFIN, will be object of the last chapter of the thesis. A summary of our work follows. In the first chapter we give some basic definitions and state several known theorems that we will need. We explain the set theoretic notation used and we describe some forcing notions that will be useful in the sequel. Our notation is generally standard, and when it is not it will be sufficiently explained. This work is meant to be self-contained. Thus, although most of the theorems recorded in this first, preliminary chapter, will be stated without proof, it will be duly indicated where a proof can be found. Chapter 2 is devoted to a proof of Ramsey’s Theorem in which forcing is used to produce a homogeneous set for the relevant partition. The partial order involved is isomorphic to Mathias forcing. In Chapter 3 we modify Baumgartner’s proof of Hindman’s Theorem to define a partial order, denoted by PC , from which we get by a forcing argument a suitable homogeneous set. Here C is an infinite set of finite subsets of N, and PC adds an infinite block sequence of finite subsets of natural numbers with the property that all finite unions of its elements belong to C. Our proof follows closely Baumgartner’s. The partial order PC is similar both to the one due to Matet in [6] and to Mathias forcing. This prompts the question whether it is equivalent to one of them or to none, which can only be solved by studying PC , which we do in chapter 4. In chapter 4 we first show that the forcing notion PC is equivalent to a more manageable partial order, which we denote by PFIN. From a PFIN- generic filter an infinite block sequence can be defined, from which, in turn, the generic filter can be reconstructed, roughly as a Mathias generic filter can be reconstructed from a Mathias real. In section 4.1 we prove that PFIN is not equivalent to Matet forcing. This we do by showing that PFIN adds a dominating real, thus also a splitting real (see [4]). But Blass proved that Matet forcing preserves p-point ultrafilters in [2], from which follows that Matet forcing does not add splitting reals. Still in section 4.1 we prove that PFIN adds a Mathias real by using Mathias characterization of a Mathias real in [7] according to which x ⊆ ω is a Mathias real over V iff x diagonalizes every maximal almost disjoint family in V . In fact, we prove that if D = (Di)i∈ω is the generic block sequence of finite sets of natural numbers added by forcing with PFIN, then both {minDi : i ∈ ω} and {maxDi : i ∈ ω} are Mathias reals. In section 4.2 we prove that PFIN is equivalent to a two-step iteration of a σ-closed and a σ-centered forcing notions. In section 4.3 we prove that PFIN satisfies Axiom A and in section 4.4 that, as Mathias forcing, it has the pure decision property. In section 4.5 we prove that PFIN does not add Cohen reals. So far, all the properties we have found of PFIN are also shared by Mathias forcing. The question remains, then, whether PFIN is equivalent to Mathias forcing. This we solve by first showing in section 5.1 that PFIN adds a Matet real and then, in section 5.2, that Mathias forcing does not add a Matet real, thus concluding that PFIN and Mathias forcing are not equivalent forcing notions. In the last, 5.3, section we explore another forcing notion, denoted by M2, which was introduced by Shelah in [9]. It is a kind of “product” of two copies of Mathias forcing, which we relate to denoted by M2. Bibliography [1] J.E. Baumgartner. A short proof of Hindmanʼs theorem. Journal of Combinatorial Theory, 17:384–386, 1974. [2] A. Blass. Applications of superperfect forcing and its relatives. In Set theory and its applications. Lecture notes in Mathematics. Springer, Berlin., 1989. [3] R.L. Graham and B. L. Rothschild. Ramseyʼs theorem for n-parameter sets. Transaction American Mathematical Society, 159:257–292, 1971. [4] L. Halbeisen. A playful approach to Silver and Mathias forcing. Studies in Logic (London), 11:123142, 2007. [5] N. Hindman. Finite sums from sequences within cells of partition of N. Journal of Combinatorial Theory (A), 17:1–11, 1974. [6] P. Matet. Some filters of partitions. The Journal of Symbolic Logic, 53:540– 553, 1988. [7] A.R.D. Mathias. Happy families. Annals of Mathematical logic, 12:59– 111, 1977. [8] F.P. Ramsey. On a problem of formal logic. London Mathematical Society, 30:264–286, 1930. [9] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(ω)/fin. Fundamenta Mathematicae, 158:81–93, 1998.
Aquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
APA, Harvard, Vancouver, ISO, and other styles
2

Owens, Kayla Denise. "Properties of the Zero Forcing Number." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2216.

Full text
Abstract:
The zero forcing number is a graph parameter first introduced as a tool for solving the minimum rank problem, which is: Given a simple, undirected graph G, and a field F, let S(F,G) denote the set of all symmetric matrices A=[a_{ij}] with entries in F such that a_{ij} doess not equal 0 if and only if ij is an edge in G. Find the minimum possible rank of a matrix in S(F,G). It is known that the zero forcing number Z(G) provides an upper bound for the maximum nullity of a graph. I investigate properties of the zero forcing number, including its behavior under various graph operations.
APA, Harvard, Vancouver, ISO, and other styles
3

Schuerger, Houston S. "Contributions to Geometry and Graph Theory." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707341/.

Full text
Abstract:
In geometry we will consider n-dimensional generalizations of the Power of a Point Theorem and of Pascal's Hexagon Theorem. In generalizing the Power of a Point Theorem, we will consider collections of cones determined by the intersections of an (n-1)-sphere and a pair of hyperplanes. We will then use these constructions to produce an n-dimensional generalization of Pascal's Hexagon Theorem, a classical plane geometry result which states that "Given a hexagon inscribed in a conic section, the three pairs of continuations of opposite sides meet on a straight line." Our generalization of this theorem will consider a pair of n-simplices intersecting an (n-1)-sphere, and will conclude with the intersections of corresponding faces lying in a hyperplane. In graph theory we will explore the interaction between zero forcing and cut-sets. The color change rule which lies at the center of zero forcing says "Suppose that each of the vertices of a graph are colored either blue or white. If u is a blue vertex and v is its only white neighbor, then u can force v to change to blue." The concept of zero forcing was introduced by the AIM Minimum Rank - Special Graphs Work Group in 2007 as a way of determining bounds on the minimum rank of graphs. Later, Darren Row established results concerning the zero forcing numbers of graphs with a cut-vertex. We will extend his work by considering graphs with arbitrarily large cut-sets, and the collections of components they yield, to determine results for the zero forcing numbers of these graphs.
APA, Harvard, Vancouver, ISO, and other styles
4

Poveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.

Full text
Abstract:
The present dissertation is a contribution to the field of Mathematical Logic and, more particularly, to the subfield of Set Theory. Within Set theory, we are mainly concerned with the interactions between the largecardinal axioms and the method of Forcing. This is the line of research with a deeper impact in the subsequent configuration of modern Mathematics. This area has found many central applications in Topology [ST71][Tod89], Algebra [She74][MS94][DG85][Dug85], Analysis [Sol70] or Category Theory [AR94][Bag+15], among others. The dissertation is divided in two thematic blocks: In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopenka’s Principle (Part I). In Block II we make a contribution to Singular Cardinal Combinatorics (Part II and Part III). Specifically, in Part I we investigate the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopenka’s Principle. As a result, we settle all the questions that were left open in [Bag12, §5]. Afterwards, we present a general theory of preservation of C(n)– extendible cardinals under class forcing iterations from which we derive many applications. In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) and other combinatorial principles, such as the tree property or the reflection of stationary sets. In Part II we generalize the main theorems of [FHS18] and [Sin16] and manage to weaken the largecardinal hypotheses necessary for Magidor-Shelah’s theorem [MS96]. Finally, in Part III we introduce the concept of _-Prikry forcing as a generalization of the classical notion of Prikry-type forcing. Subsequently we devise an abstract iteration scheme for this family of posets and, as an application, we prove the consistency of ZFC + ¬SCH_ + Refl(La present tesi és una contribució a l’estudi de la Lògica Matemàtica i més particularment a la Teoria de Conjunts. Dins de la Teoria de Conjunts, la nostra àrea de recerca s’emmarca dins l’estudi de les interaccions entre els Axiomes de Grans Cardinals i el mètode de Forcing. Aquestes dues eines han tigut un impacte molt profund en la configuració de la matemàtica contemporànea com a conseqüència de la resolució de qüestions centrals en Topologia [ST71][Tod89], Àlgebra [She74][MS94][DG85][Dug85], Anàlisi Matemàtica [Sol70] o Teoria de Categories [AR94][Bag+15], entre d’altres. La tesi s’articula entorn a dos blocs temàtics. Al Bloc I analitzem la jerarquia de Grans Cardinals compresa entre el primer cardinal supercompacte i el Principi de Vopenka (Part I), mentre que al Bloc II estudiem alguns problemes de la Combinatòria Cardinal Singular (Part II i Part III). Més precisament, a la Part I investiguem el fenòmen de Crisi d’Identitat en la regió compresa entre el primer cardinal supercompacte i el Principi de Vopenka. Com a conseqüència d’aquesta anàlisi resolem totes les preguntes obertes de [Bag12, §5]. Posteriorment presentem una teoria general de preservació de cardinals C(n)–extensibles sota iteracions de longitud ORD, de la qual en derivem nombroses aplicacions. A la Part II i Part III analitzem la relació entre la Hipòtesi dels Cardinals Singulars (SCH) i altres principis combinatoris, tals com la Propietat de l’Arbre o la reflexió de conjunts estacionaris. A la Part II obtenim sengles generalitzacions dels teoremes principals de [FHS18] i [Sin16] i afeblim les hipòtesis necessàries perquè el teorema de Magidor-Shelah [MS96] siga cert. Finalment, a la Part III, introduïm el concepte de forcing _-Prikry com a generalització de la noció clàssica de forcing del tipus Prikry. Posteriorment dissenyem un esquema d’iteracions abstracte per aquesta família de forcings i, com a aplicació, derivem la consistència de ZFC + ¬SCH_ + Refl(
APA, Harvard, Vancouver, ISO, and other styles
5

El-Sharif, Najla Saleh Ahmed. "Second-order methods for some nonlinear second-order initial-value problems with forcing." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lambie-Hanson, Christopher. "Covering Matrices, Squares, Scales, and Stationary Reflection." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/368.

Full text
Abstract:
In this thesis, we present a number of results in set theory, particularly in the areas of forcing, large cardinals, and combinatorial set theory. Chapter 2 concerns covering matrices, combinatorial structures introduced by Viale in his proof that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. In the course of this proof and subsequent work with Sharon, Viale isolated two reflection principles, CP and S, which can hold of covering matrices. We investigate covering matrices for which CP and S fail and prove some results about the connections between such covering matrices and various square principles. In Chapter 3, motivated by the results of Chapter 2, we introduce a number of square principles intermediate between the classical and (+). We provide a detailed picture of the implications and independence results which exist between these principles when is regular. In Chapter 4, we address three questions raised by Cummings and Foreman regarding a model of Gitik and Sharon. We first analyze the PCF-theoretic structure of the Gitik-Sharon model, determining the extent of good and bad scales. We then classify the bad points of the bad scales existing in both the Gitik-Sharon model and various other models containing bad scales. Finally, we investigate the ideal of subsets of singular cardinals of countable cofinality carrying good scales. In Chapter 5, we prove that, assuming large cardinals, it is consistent that there are many singular cardinals such that every stationary subset of + reflects but there are stationary subsets of + that do not reflect at ordinals of arbitrarily high cofinality. This answers a question raised by Todd Eisworth and is joint work with James Cummings. In Chapter 6, we extend a result of Gitik, Kanovei, and Koepke regarding intermediate models of Prikry-generic forcing extensions to Radin generic forcing extensions. Specifically, we characterize intermediate models of forcing extensions by Radin forcing at a large cardinal using measure sequences of length less than. In the final brief chapter, we prove some results about iterations of w1-Cohen forcing with w1-support, answering a question of Justin Moore.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Yanyan. "Periodic Forcing of a System near a Hopf Bifurcation Point." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291174795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zimmermann, Urs [Verfasser]. "Colloids in Non-Equilibrium: Dynamical Density Functional Theory of Colloidal Suspensions under External Forcing / Urs Zimmermann." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2018. http://d-nb.info/1151698288/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaber, Guilhem. "A logical study of program equivalence." Thesis, Nantes, Ecole des Mines, 2014. http://www.theses.fr/2014EMNA0124/document.

Full text
Abstract:
Prouver l’équivalence de programmes écrits dans un langage fonctionnel avec références est un problème notoirement difficile. L’objectif de cette thèse est de proposer un système logique dans lequel de telles preuves peuvent être formalisées, et dans certains cas inférées automatiquement. Dans la première partie, une méthode générique d’extension de la théorie des types dépendants est proposée, basée sur une interprétation du forcing vu comme une traduction de préfaisceaux de la théorie des types. Cette extension dote la théorie des types de constructions récursives gardées, qui sont utilisées ensuite pour raisonner sur les références d’ordre supérieure. Dans une deuxième partie, nous définissons une sémantique des jeux nominale opérationnelle pour un langage avec références d’ordre supérieur. Elle marie la structure catégorique de la sémantique des jeux avec une représentation sous forme de traces de la dénotation des programmes, qui se calcule de manière opérationnelle et dispose donc de bonnes propriétés de modularité. Cette sémantique nous permet ensuite de prouver la complétude de relations logiques à la Kripke définit de manière directe, via l’utilisation de types récursifs gardés, sans utilisation de la biorthogonalité. Une telle définition directe nécessite l’utilisation de mondes omniscient et un contrôle fin des locations divulguées. Finalement, nous introduisons une logique temporelle qui donne un cadre pour définir ces relations logiques à la Kripke. Nous ramenons alors le problème de l’équivalence contextuelle à la satisfiabilité d’une formule de cette logique générée automatique, c’est à dire à l’existence d’un monde validant cette formule. Sous certaines conditions, cette satisfiabilité peut être décidée via l’utilisation d’un solveur SMT. La complétude de notre méthode devrait permettre d’obtenir des résultats de décidabilité pour l’équivalence contextuelle de certains fragment du langage considéré, en fournissant un algorithme pour construire de tels mondes
Proving program equivalence for a functional language with references is a notoriously difficult problem. The goal of this thesis is to propose a logical system in which such proofs can be formalized, and in some cases inferred automatically. In the first part, a generic extension method of dependent type theory is proposed, based on a forcing interpretation seen as a presheaf translation of type theory. This extension equips type theory with guarded recursive constructions, which are subsequently used to reason on higher-order references. In the second part, we define a nominal game semantics for a language with higher-order references. It marries the categorical structure of game semantics with a trace representation of denotations of programs, which can be computed operationally and thus have good modularity properties. Using this semantics, we can prove the completeness of Kripke logical relations defined in a direct way, using guarded recursive types, without using biorthogonality. Such a direct definition requires omniscient worlds and a fine control of disclosed locations. Finally, we introduce a temporal logic which gives a framework to define these Kripke logical relations. The problem of contextual equivalence is then reduced to the satisfiability of an automatically generated formula defined in this logic, i.e. to the existence of a world validating this formula. Under some conditions, this satisfiability can be decided using a SMT solver. Completeness of our methods opens the possibility of getting decidability results of contextual equivalence for some fragments of the language, by giving an algorithm to build such worlds
APA, Harvard, Vancouver, ISO, and other styles
10

Sexton, William Nelson. "The Minimum Rank of Schemes on Graphs." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4402.

Full text
Abstract:
Let G be an undirected graph on n vertices and let S(G) be the class of all real-valued symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let V = {1, 2, . . . , n} be the vertex set of G. A scheme on G is a function f : V → {0, 1}. Given a scheme f on G, there is an associated class of matrices Sf (G) = {A ∈ S(G)|aii = 0 if and only if f(i) = 0}. A scheme f is said to be constructible if there exists a matrix A ∈ Sf (G) with rank A = min{rank M|M ∈ S(G)}. We explore properties of constructible schemes and give a complete classification of which schemes are constructible for paths and cycles. We also consider schemes on complete graphs and show the existence of a graph for which every possible scheme is constructible.
APA, Harvard, Vancouver, ISO, and other styles
11

Malloy, Nicole Andrea. "Minimum Rank Problems for Cographs." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3873.

Full text
Abstract:
Let G be a simple graph on n vertices, and let S(G) be the class of all real-valued symmetric nxn matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The smallest rank achieved by a matrix in S(G) is called the minimum rank of G, denoted mr(G). The maximum nullity achieved by a matrix in S(G) is denoted M(G). For each graph G, there is an associated minimum rank class, MR(G) consisting of all matrices A in S(G) with rank A = mr(G). Although no restrictions are applied to the diagonal entries of matrices in S(G), sometimes diagonal entries corresponding to specific vertices of G must be zero for all matrices in MR(G). These vertices are known as nil vertices (see [6]). In this paper I discuss some basic results about nil vertices in general and nil vertices in cographs and prove that cographs with a nil vertex of a particular form contain two other nil vertices symmetric to the first. I discuss several open questions relating to these results and a counterexample. I prove that for all cographs G without an induced complete tripartite graph with independent sets all of size 3, the zero-forcing number Z(G), a graph theoretic parameter, is equal to M(G). In fact this result holds for a slightly larger class of cographs and in particular holds for all threshold graphs. Lastly, I prove that the maximum of the minimum ranks of all cographs on n vertices is the floor of 2n/3.
APA, Harvard, Vancouver, ISO, and other styles
12

Lellouch, Gabriel. "Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS220.

Full text
Abstract:
L’un des principaux invariants dynamiques associés à un homéomorphisme de surface isotope à l’identité est son ensemble de rotation, décrivant les vitesses et directions asymptotiques moyennes selon lesquelles les points “tournent” autour de la surface sous l’action de l’homéomorphisme. Sur le tore en particulier, de nombreux résultats relient la forme ou la taille de l’ensemble de rotation à des propriétés dynamiques de l’homéomorphisme. Cette thèse a pour but de généraliser au cas des surfaces de genre ≥ 2 un certain nombre de résultats connus sur le tore pour les homéomorphismes ayant un “gros” ensemble de rotation : positivité de l’entropie, réalisation de vecteurs de rotation par des points périodiques, déviations bornées, etc. L’outil principal utilisé est la théorie de forçage de Le Calvez et Tal, reposant sur la construction d’un feuilletage transverse et l’étude des trajectoires des points relativement à ce feuilletage. Les deux premiers chapitres présentent des résultats préliminaires à ce cadre général. Au chapitre 3, nous menons une étude globale sur les cycles asymptotiques de points dont les trajectoires ont des directions homologiques qui s’intersectent. Nous montrons que cette situation suffit à assurer la positivité de l’entropie, ce qui permet d’aboutir à la généralisation de deux résultats connus sur le tore, les théorèmes de Llibre-Mackay et de Franks. Enfin, au chapitre 4, nous montrons à l’aide de ce dernier résultat qu’un homéomorphisme dont l’ensemble de rotation contient 0 dans son intérieur est à déviation bornée, généralisant encore une propriété connue sur le tore. Nous terminons avec diverses conséquences de ce résultat
One of the main dynamical invariants related to a surface homeomorphism isotopic to identity is its rotation set, which describes the asymptotic average speeds and directions with which the points “rotate” around the surface under the action of the homeomorphism. On the torus in particular, many results link the shape or the size of the rotation set to dynamical properties of the homeomorphism. The aim of this thesis is to generalize to the case of surfaces of genus _ 2 a certain number of results, well-known on the torus, for homeomorphisms with a “big” rotation set : positivity of the entropy, realization of rotation vectors by periodic points, bounded deviations, etc. The leading tool used is the forcing theory by Le Calvez and Tal, based on the construction of a transverse foliation and the study of trajectories of points relatively to this foliation. The first two chapters present some preliminary results in this general context. In chapter 3, we conduct a general study on the asymptotic cycles of points whose trajectories have homological directions that intersect. We show that this situation is sufficient to ensure the positivity of the entropy, which leads us to derive a generalization of two well-known results on the torus, Llibre-Mackay and Franks theorems. Finally, in chapter 4, we use this last result to show that a homeomorphism for which 0 lies in the interior of the rotation set has bounded deviations, generalizing again a well-known property on the torus. We conclude with some consequences of this result
APA, Harvard, Vancouver, ISO, and other styles
13

Walker, Kevin R. "Climatic Dependence of Terrestrial Species Assemblage Structure." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23697.

Full text
Abstract:
An important goal of ecological studies is to identify and explain patterns or variation in species assemblages. Ecologists have discovered that global variation in the number of species in an assemblage relates strongly to climate, area, and topographic variability in terrestrial environments. Is the same true for other characteristics of species assemblages? The focus of this thesis is to determine whether species assemblage structure, defined primarily as the body mass frequency distributions and species abundance distributions relate in convergent ways to a set of a few environmental variables across broad spatial scales. First, I found that for mammals and trees most of their geographic variation across North and South America in assemblage structure is statistically related to temperature, precipitation, and habitat heterogeneity (e.g. different vegetation types) in convergent ways. I then examined bird assemblages across islands and continents. Despite the evolutionary and ecological differences between island and continental assemblages, I found that much of the variation in bird assemblage structure depends on temperature, precipitation, land area, and island isolation in congruent patterns in continent and island bird assemblages. Frank Preston modeled species richness based on the total number of individuals and the number of individuals of the rarest species. Building on Preston’s model, Chapter 2 hypothesized that gradients of diversity correlate with gradients in the number of individuals of the rarest species, which in turn are driven by gradients in temperature and precipitation. This hypothesis assumes that species abundance distributions relate to temperature and precipitation in similar ways anywhere in the world. I found that both the number of individuals of the rarest species (m) and the proportion of species represented by a single individual in samples of species assemblages (Φ) were strongly related to climate. Moreover, global variation in species richness was more strongly related to these measures of rarity than to climate. I propose that variation in the shape of the log-normal species abundance distribution is responsible for global gradients of species richness: rare species (reflected in m and Φ) persist better in benign climates. Even though body mass frequency distributions of assemblages show convergent patterns in relation to a set of a few environmental variables, the question remains as to what processes are responsible for creating the geographical variation in the body-size distribution of species. Several mechanisms (e.g. heat conservation and resource availability hypotheses) have been proposed to explain this variation. Chapter 5 tested and found no empirical support for the predictions derived from each of these mechanisms; I showed that species of all sizes occur across the entire temperature gradient. In conclusion, assemblage structure among various taxonomic groups across broad spatial scales relate in similar ways to a set of a few environmental variables, primarily mean annual temperature and mean annual precipitation. While the exact mechanisms are still unknown, I hypothesize several to explain the patterns of convergent assembly. Résumé Un but important de l'écologie est d'identifier et d'expliquer la variation de premier ordre dans les caractéristiques des assemblages d'espèces. Un des patrons ayant déjà été identifié par les écologistes, c'est que la variation mondiale de la richesse en espèces est liée à la variation du climat, de l'aire et de la topographie. Est-ce que d'autres caractéristiques des assemblages d'espèces peuvent être reliées à ces mêmes variables? Le but de cette thèse est de déterminer si la structure des assemblages d'espèces, ici définie comme la distribution des fréquences de masse corporelle ainsi que la distribution d'abondances des espèces, est reliée de manière convergente à un petit ensemble de variables environnementales, et ce, partout dans le monde. D'abord, j'ai déterminé que, pour les mammifères et les arbres, la majorité de la variation géographique dans la structure des assemblages d'espèces est reliée statistiquement à température, précipitation, et l’hétérogénéité du couvert végétal , et ce, de manière convergente pour l'Amérique du Nord et du Sud. Je me suis ensuite penché sur l'assemblage des oiseaux sur les îles et les continents. Malgré les larges différences évolutives et écologiques qui distinguent les îles des continents, je démontre que la majorité de la variation dans la structure des assemblages d'oiseaux dépend de la température, la précipitation, la superficie et l’isolation de façon congruente sur les îles et les continents. Frank Preston a modélisé la richesse en espèces d'une localité, basée sur le nombre total d'individus ainsi que le nombre d'individus de l’espèce la plus rare. En s'appuyant sur les modèles de Preston, Chapître 3 propose une nouvelle hypothèse voulant que les gradients de diversité dépendent des gradients du nombre d'individus de l’espèce la plus rare. Celle-ci dépend des gradients de température et de précipitation. Cette hypothèse repose sur le postulat que la distribution d’abondances des espèces dépend de la température et la précipitation, et ce, de la même manière n’importe où au monde. J’ai mis en évidence que le nombre d’individus de l’espèce la plus rare (m), ainsi que la proportion d’espèces représentées par un individu unique () dans des échantillons locaux étaient fortement reliés au climat. D’ailleurs, la variation globale de la richesse en espèces était plus fortement reliée à ces indices de rareté qu’au climat. Je propose que la variation dans la forme de la distribution log-normale d’abondances d’individus soit responsable des gradients mondiaux de richesse en espèces. En d’autres mots, les espèces rares (indiquées par m et ) persistent mieux dans des climats bénins. Malgré que la distribution des fréquences de masse corporelle des assemblages d'espèces soit liée de manière convergente à seulement quelques variables environnementales, la question demeure à savoir quels processus sont responsables des gradients géographiques de variation en masse corporelle des espèces. Plusieurs mécanismes ont été proposés pour expliquer cette variation. Dans Chapitre 5, j'ai testé les prédictions dérivées de chacun de ces mécanismes sans trouver de support empirique pour aucun. Je démontre aussi que des espèces de toutes tailles se retrouvent sur le gradient de température en entier. En conclusion, la structure des assemblages d'espèces, pour différents groupes taxonomiques et à travers le monde, est liée de façon similaire à un petit nombre de variables environnementales. Bien que les mécanismes soient encore inconnus, j'en propose plusieurs pouvant expliquer ces patrons d'assemblages convergents.
APA, Harvard, Vancouver, ISO, and other styles
14

Mahajan, Salil. "CCM3 as applied to an idealized all land zonally symmetric planet, Terra Blanda 3." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1422.

Full text
Abstract:
Community Climate Model 3 (CCM3) is run on an idealized all land zonally symmetric planet (Terra Blanda) with no seasonality, no snow and fixed soil moisture to obtain a stationary time series effectively much longer than conventional runs with geography and seasons. The surface temperature field generated is studied to analyze the spatial and temporal spectra, estimate the length scale and time scale of the model, and test the linearity of response to periodic and steady heat source forcings. The length scale of the model is found to be in the range of 1000-2000 km and the time scale is estimated to be 24 days for the global average surface temperature field. The response of the global average temperature is found to be fairly linear to periodic and the steady heat source forcings. The results obtained are compared with the results of a similar study that used CCM0. Fluctuation Dissipation theorem is also tested for applicability on CCM3. The response of the surface temperature field to a step function forcing is demonstrated to be very similar to the decay of naturally occurring anomalies, and the auto-correlation function. Return period of surface temperature anomalies is also studied. It is observed that the length of the data obtained from CCM3, though sufficient for analysis of first and second moments, is significantly deficient for return period analysis. An AR1 process is simulated to model the global averaged surface temperature of Terra Blanda 3 to assess the sampling error associated with short runs.
APA, Harvard, Vancouver, ISO, and other styles
15

Owen, Robert. "Outer model theory and the definability of forcing." 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hrus̆ák, Michael. "Rendezvous with madness." 1999. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.

Full text
Abstract:
Thesis (Ph. D.)--York University, 1999. Graduate Programme in Mathematics and Statistics.
Typescript. Includes bibliographical references (leaves 87-93). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.
APA, Harvard, Vancouver, ISO, and other styles
17

Doucha, Michal. "Forcing, deskriptivní teorie množin, analýza." Doctoral thesis, 2013. http://www.nusl.cz/ntk/nusl-329275.

Full text
Abstract:
The dissertation thesis consists of two thematic parts. The first part, i.e. chapters 2, 3 and 4, contains results concerning the topic of a new book of the supervisor and coauthors V. Kanovei and M. Sabok "Canonical Ramsey Theory on Polish Spaces". In Chapter 2, there is proved a canonization of all equivalence relations Borel reducible to equivalences definable by analytic P-ideals for the Silver ideal. Moreover, it investigates and classifies sube- quivalences of the equivalence relation E0. In Chapter 3, there is proved a canonization of all equivalence relations Borel reducible to equivalences de- finable by Fσ P-ideals for the Laver ideal and in Chapter 4, we prove the canonization for all analytic equivalence relations for the ideal derived from the Carlson-Simpson (Dual Ramsey) theorem. The second part, consisting of Chapter 5, deals with the existence of universal and ultrahomogeneous Polish metric structures. For instance, we construct a universal Polish metric space which is moreover equipped with countably many closed relations or with a Lipschitz function to an arbitrarily chosen Polish metric space. This work can be considered as an extension of the result of P. Urysohn who constructed a universal and ultrahomogeneous Polish metric space.
APA, Harvard, Vancouver, ISO, and other styles
18

Tragou, Eleni-Anthi. "The buoyancy forcing and dynamical response of the Red Sea." Thesis, 1998. https://dspace.library.uvic.ca//handle/1828/8801.

Full text
Abstract:
The buoyancy forcing of the Red Sea and its dynamical response are examined. Buoyancy transports through the Strait of Bab el Mandab, the major oceanic exchange point of the Red Sea with the open ocean, provide a strong constraint on the surface buoyancy fluxes. Hydrographic data and current records at the Strait require the annual mean surface heat flux to be −8 ± 2 W m⁻². For the annual mean freshwater fluxes the conservation of volume and salt give the net evaporation rate as 1.60 ± 0.35 m y⁻¹. The surface fluxes estimated from the heat and freshwater transports at the Strait are compared to the annual mean surface fluxes estimated from standard meteorological data sets and formulae used on a global scale as in the revised Comprehensive Ocean-Atmosphere Data Set (UWM/COADS). The difference between the surface heat fluxes and that implied by the exchange through the Strait is large and close to 100 W m⁻². A large portion of this difference is explained by the overestimated solar irradiance due to the neglect of spatial and seasonal variations of aerosol concentration, and misapplication of a standard formula for insolation. Another portion of the difference comes from the underestimated longwave radiation due to the use of a bulk formula which is adequate for the open ocean but inappropriate for the Red Sea. The evaporative losses are also found to be underestimated, probably because of underestimated wind speeds. The net evaporation is the main contributor to the annual mean buoyancy loss approximately of 2 × 10⁻⁸ m² s⁻3. The annual mean surface buoyancy flux, which is compatible with the oceanic buoyancy transport, is used with Phillips' similarity model to investigate the buoyancy driven flow of the upper 140m of the Red Sea. The observed stratification of the Red Sea can be achieved only with a very large eddy viscosity in the return flow. It is possible that this high vertical viscosity could be a proxy for processes neglected by this model such as bottom friction on the sloping boundaries. The effect of wind stress is small, but a southward wind combined with the bottom friction of a modified model with depth-dependent basin width could account for the viscous force required by a model. The effectiveness of the bottom friction in retarding the flow depends on the magnitude of the lateral diffusion of momentum. To explore the possibility of measuring the horizontal momentum fluxes above a sloping boundary in a channel, we performed an experiment in the Strait of Georgia with two Acoustic Doppler Current Profilers. Although further investigation of such measurements is required and several issues remain to be resolved, it is shown that an estimate of the horizontal eddy viscosity acting on the tidal currents is possible with this method and gives about 50 m² s⁻¹ . Overall, the dynamics of the Red Sea appears to be determined mainly by the surface buoyancy fluxes and internal and lateral frictional forces. Accurate modelling of the Red Sea requires improved knowledge of the forcing and of an appropriate parameterization of the friction.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
19

Rees, Timothy. "Internal Wave Generation and Near-Resonant Interactions: Theory and Applications." Thesis, 2011. http://hdl.handle.net/10012/5888.

Full text
Abstract:
Near-resonant triad interactions and wave generation theory are investigated for continuously stratified fluids. Interaction equations are derived for spatially-varying wave trains under the inviscid Boussinesq approximation. Rotational effects are included, and properties of the underlying eigenvalue problem are explored. To facilitate a numerical study of the near-resonant interactions, numerical methods are developed and an analysis of wave generation on a periodic domain is performed. Numerical experiments using laboratory and ocean-scale parameters are conducted, and the simulations confirm the validity of the wave forcing theory. Interaction experiments demonstrate a strong tendency for waves to exhibit nonlinear behaviour. While resonant interactions are observed in the laboratory scale simulations, nonlinear steepening effects and the formation of solitary-like waves dominate the ocean-scale experiments. The results suggest that the weakly-nonlinear interaction theory is only appropriate in a limited parameter regime. The problem of analyzing forced wave equations on an infinite domain is also considered. Motivated by the results obtained on a periodic domain, asymptotic analysis is applied to three important wave equations. The method of steepest descents is used to determine the large-time behaviour for the linearized Korteweg-de Vries, Benjamin-Bona-Mahony, and internal gravity wave equations. The asymptotic results are compared with numerical experiments and found to agree to high precision.
APA, Harvard, Vancouver, ISO, and other styles
20

Gintautas, Vadas. "Experimental evidence for mixed reality states in an interreality system, and, generalized resonant forcing of nonlinear dynamics /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337760.

Full text
Abstract:
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2008.
Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6887. Adviser: Alfred Huebler. Includes bibliographical references (leaves 73-76) Available on microfilm from Pro Quest Information and Learning.
APA, Harvard, Vancouver, ISO, and other styles
21

Steinberg, Matías Uriel. "Automatización para el entorno Isabelle / ZF." Bachelor's thesis, 2021. http://hdl.handle.net/11086/17550.

Full text
Abstract:
Tesis (Lic. en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2021.
Al formalizar en Isabelle/ZF las definiciones asociadas a Forcing para demostrar la independencia de la Hipótesis del Continuo, se presenta una cantidad significativa de tareas sistemáticas y repetitivas, entre las que se destacan la relativización de términos y predicados, por un lado, y la síntesis de fórmulas internalizadas, por el otro. Por lo tanto, se desea evitar el trabajo manual todo lo posible. Este trabajo consiste en brindar herramientas automáticas que se encarguen de dichas tareas y minimicen la cantidad de intervenciones manuales requeridas. Más aún, se justificará con cierto grado de formalidad la corrección de los métodos implementados, y también se detallará la intuición detrás de las partes más complejas. Finalmente, se mostrará cuál es la disciplina a seguir a la hora de utilizar los comandos implementados.
When the definitions regarding Forcing are being formalised in Isabelle/ZF, in order to prove the independence of the Continuum Hypothesis, a lot of systematic and repetitive tasks are required. Among them, relativization of terms and predicates, on the one hand, and synthesis of internalized formulas, on the other hand, are the most important ones. Thus, it is desired to reduce manual intervention as much as possible. In this thesis, some automatic tools will be provided to take care of those tasks, and will reduce the amount of manual interventions required. Furthermore, the soundness of the implemented methods will be formally justified, and the intuition behind the most complex parts will also be detailed. Finally, the whole discipline to use the commands will be shown.
publishedVersion
Fil: Steinberg, Matías Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
APA, Harvard, Vancouver, ISO, and other styles
22

Karthikeyan, P. "A New Approach To Process Modelling And Simulation Of Metal Forming." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Glivická, Jana. "Logické základy forcingu." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-324411.

Full text
Abstract:
This thesis examines the method of forcing in set theory and focuses on aspects that are set aside in the usual presentations or applications of forcing. It is shown that forcing can be formalized in Peano arithmetic (PA) and that consis- tency results obtained by forcing are provable in PA. Two ways are presented of overcoming the assumption of the existence of a countable transitive model. The thesis also studies forcing as a method giving rise to interpretations between theories. A notion of bi-interpretability is defined and a method of forcing over a non-standard model of ZFC is developed in order to argue that ZFC and ZF are not bi-interpretable. 1
APA, Harvard, Vancouver, ISO, and other styles
24

Bouška, David. "Limity tříd konečných struktur v teorii modelů." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-406283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gunther, Emmanuel. "Formalización de fundaciones de la matemática y compiladores correctos por construcción." Doctoral thesis, 2019. http://hdl.handle.net/11086/14372.

Full text
Abstract:
Tesis (Doctor en Ciencias de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2019.
Dentro de las teorías fundacionales de la matemática se encuentran la Teoría de Conjuntos y la Teoría de Tipos. La primera es bien conocida en la comunidad matemática; la teoría de tipos además de ser una posible fundación, es una base para lenguajes de programación lo suficientemente expresivos para enunciar teoremas, escribir sus pruebas y que su corrección sea verificada automáticamente. Esta tesis resume tres trabajos independientes pero relacionados entre sí. El primero consiste en el desarrollo de una metodología para definir compiladores correctos por construcción mediante el uso de tipos dependientes. Gracias a la expresividad de estos sistemas de tipos refinamos los lenguajes fuente y destino con su semántica; el tipo de la función de compilación es exactamente la preservación de la semántica. Matemáticamente podemos concebir los lenguajes como álgebras de términos de una signatura y al compilador como el homomorfismo inducido por la interpretación de una signatura en la otra. Esto nos llevó a formalizar en Agda una librería para Álgebra Universal Heterogénea, incluyendo las principales definiciones y resultados básicos, un sistema deductivo para un cálculo ecuacional y las nociones de morfismos entre signaturas y álgebras reducto. El último aporte de la tesis surge del estudio de uno de los problemas más famosos en la teoría de conjuntos: la independencia de la hipótesis del continuo (CH) respecto a la teoría ZFC. Gödel y Cohen demostraron, respectivamente, que no puede refutarse ni probarse CH en ZFC. Cohen desarrolló para ello la técnica de Forcing, que es la única manera conocida para extender modelos de ZFC. Si bien este desarrollo constituye uno de los avances más grandes en teoría de conjuntos, no existe hasta el momento ninguna formalización de Forcing en asistentes de prueba. Como parte de este doctorado hemos comenzado la formalización en el asistente Isabelle/ZF de la técnica de Forcing, llegando a probar que la extensión genérica satisface varios axiomas de ZF.
Set Theory and Type Theory are known as Foundations of Mathematics. The first one is well known by mathematicians; Type Theory, besides being a foundation, is the basis for programming languages expressive enough to state theorems, write their proofs and verify their correctness automatically. This thesis summarizes three works. The first one consists of the development of a methodology to define correct-by-construction compilers, using dependent types. Thanks to the expressiveness of these type systems, we refine the syntax of source and target languages by adding information of semantics at type level; then, the type of the compiler function expresses the property of correctness. We can conceive the languages as term algebras of a signature, and the compiler as the homomorphism induced by the interpretation of a signature in other. Hence we formalized in the Agda proof assistant a library of Heterogeneous Universal Algebra, including main definitions and basic results, a deductive system for equational calculus and notions of morphisms between signatures and reduct algebras. The last contribution of this thesis is motivated by the study of one of the most famous problems in set theory: the independence of the continuum hypothesis (CH) with respect to the ZFC theory. Gödel and Cohen showed that CH cannot be refuted or proven. In his work, Cohen developed the technique of forcing, the only known way to extend models of ZFC. Despite the importance of forcing in set theory, there was no mechanization in proof assistants. Our last work consists of the first steps of a complete formalization of forcing in the Isabelle proof assistant.
Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
APA, Harvard, Vancouver, ISO, and other styles
26

Natarajan, Lakshmi Prasad. "Low-Complexity Decoding and Construction of Space-Time Block Codes." Thesis, 2013. http://etd.iisc.ernet.in/2005/3372.

Full text
Abstract:
Space-Time Block Coding is an efficient communication technique used in multiple-input multiple-output wireless systems. The complexity with which a Space-Time Block Code (STBC) can be decoded is important from an implementation point of view since it directly affects the receiver complexity and speed. In this thesis, we address the problem of designing low complexity decoding techniques for STBCs, and constructing STBCs that achieve high rate and full-diversity with these decoders. This thesis is divided into two parts; the first is concerned with the optimal decoder, viz. the maximum-likelihood (ML) decoder, and the second with non-ML decoders. An STBC is said to be multigroup ML decodable if the information symbols encoded by it can be partitioned into several groups such that each symbol group can be ML decoded independently of the others, and thereby admitting low complexity ML decoding. In this thesis, we first give a new framework for constructing low ML decoding complexity STBCs using codes over the Klein group, and show that almost all known low ML decoding complexity STBCs can be obtained by this method. Using this framework we then construct new full-diversity STBCs that have the least known ML decoding complexity for a large set of choices of number of transmit antennas and rate. We then introduce the notion of Asymptotically-Good (AG) multigroup ML decodable codes, which are families of multigroup ML decodable codes whose rate increases linearly with the number of transmit antennas. We give constructions for full-diversity AG multigroup ML decodable codes for each number of groups g > 1. For g > 2, these are the first instances of g-group ML decodable codes that are AG or have rate more than 1. For g = 2 and identical delay, the new codes match the known families of AG codes in terms of rate. In the final section of the first part we show that the upper triangular matrix R encountered during the sphere-decoding of STBCs can be rank-deficient, thus leading to higher sphere-decoding complexity, even when the rate is less than the minimum of the number of transmit antennas and the number receive antennas. We show that all known AG multigroup ML decodable codes suffer from such rank-deficiency, and we explicitly derive the sphere-decoding complexities of most known AG multigroup ML decodable codes. In the second part of this thesis we first study a low complexity non-ML decoder introduced by Guo and Xia called Partial Interference Cancellation (PIC) decoder. We give a new full-diversity criterion for PIC decoding of STBCs which is equivalent to the criterion of Guo and Xia, and is easier to check. We then show that Distributed STBCs (DSTBCs) used in wireless relay networks can be full-diversity PIC decoded, and we give a full-diversity criterion for the same. We then construct full-diversity PIC decodable STBCs and DSTBCs which give higher rate and better error performance than known multigroup ML decodable codes for similar decoding complexity, and which include other known full-diversity PIC decodable codes as special cases. Finally, inspired by a low complexity essentially-ML decoder given by Sirianunpiboon et al. for the two and three antenna Perfect codes, we introduce a new non-ML decoder called Adaptive Conditional Zero-Forcing (ACZF) decoder which includes the technique of Sirianunpiboon et al. as a special case. We give a full-diversity criterion for ACZF decoding, and show that the Perfect codes for two, three and four antennas, the Threaded Algebraic Space-Time code, and the 4 antenna rate 2 code of Srinath and Rajan satisfy this criterion. Simulation results show that the proposed decoder performs identical to ML decoding for these five codes. These STBCs along with ACZF decoding have the best error performance with least complexity among all known STBCs for four or less transmit antennas.
APA, Harvard, Vancouver, ISO, and other styles
27

Pivoda, Tomáš. "Mnohost bytí: Ontologie Alaina Badioua." Doctoral thesis, 2012. http://www.nusl.cz/ntk/nusl-308479.

Full text
Abstract:
Tomáš Pivoda, The Multiplicity of Being: The Ontology of Alain Badiou PhD thesis Abstract The thesis introduces for the first time in the Czech philosophical context the ontology of the French philosopher Alain Badiou, as he set it out in his fundamental work Being and Event (L'être et l'événement, 1988). It first presents the starting point of Badiou's philosophy as well as the reasons of his identification of ontology with the set theory, and it points out Badiou's importance for contemporary philosophy, especially for the so called speculative realism around Quentin Meillassoux. The main axis of the exposition is then built around Badiou's four fundamental "Ideas": the multiplicity, the event, the truths and the subject, in connection with which it is shown how Badiou constructs his conceptual apparatus out of individual axioms of the set theory, whereby he follows the basic formal definition of multiplicity based on the operator . In connection with∈ the first Idea of multiplicity, the thesis exposes - with references to Martin Heidegger and Plato - Badiou's conceptual transposition of the couple one/multiple on the couple existence/being and defines the fundamental concepts of his ontology - the situation, the presentation, the representation and the void, with the help of which Badiou interprets...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!