Dissertations / Theses on the topic 'Forcing theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Forcing theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
García, Ávila Luz María. "Forcing Arguments in Infinite RamseyTheory." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/119818.
Full textAquesta tesi és una contribució a la teoria combinatria de conjunts, específcament a la teoria de Ramsey, que estudia les particions de conjunts infinits. El principi combinatori bàsic diu que per a tota partició del conjunt dels nombres naturals en un nombre finit de classes hi ha un conjunt infinit de nombres naturals que està inclòs en una de les classes. El teorema de Ramsey [6], que hom pot veure com una generalització d'aquest principi bàsic, tracta de les particions del conjunt [N]k de tots els subconjunts de k elements de nombres naturals. Afirma que, per a cada k >/=1 i cada partició de [N]k en un nombre finit de classes, existeix un subconjunt infinit de nombres naturals, M, tal que tots els subconjunts de k elements de M pertanyen a una mateixa classe. Els conjunts amb aquesta propietat són homogenis per a la partició. En [3], Neil Hindman va demostrar un resultat de tipus Ramsey que Graham i Rotschild havien conjecturat en [2]. El teorema de Hindman afirma que si el conjunt de nombres naturals es divideix en dues classes, almenys una d'aquestes classes conté un conjunt infinit tal que totes les sumes finites d'elements distints del conjunt pertanyen a la mateixa classe. La demostració original del Teorema de Hindman va ser simplificada per James Baumgartner en [1]. En aquesta tesi donem noves demostracions d'aquests dos teoremes, basades en la tècnica del forcing. Després, analitzem els ordres parcials corresponents i n'estudiem les propietats i la relació amb altres ordres coneguts semblants. L'ordre parcial emprat en la demostració del teorema de Ramsey és equivalent al forcing de Mathias, definit en [5]. L'ordre parcial que apareix en la prova del teorema de Hindman, que anomenem PFIN, serà l'objecte d'estudi principal de la tesi. En el primer capítol donem algunes definicions bàsiques i enunciem alguns teoremes coneguts que necessitarem més endavant. El segon capítol conté la demostració del teorema de Ramsey. Usant la tècnica del forcing, produïm un conjunt homogeni per a una partició donada. L'ordre parcial que utilitzem és equivalent al de Mathias. En el tercer capítol, modifiquem la demostració de Baumgartner del teorema de Hindman per definir un ordre parcial, que anomenem PC , a partir del qual, mitjançant arguments de forcing, obtenim el conjunt homogeni buscat. Aquí, C es un conjunt infinit de conjunts finits disjunts de nombres naturals, i PC afegeix una successió de conjunts finits de nombres naturals amb la propietat de que totes les unions finites de elements d'aquesta successió pertanyen al conjunt C . A partir d'aquesta successió és fàcil obtenir un conjunt homogeni per a la partició del teorema original de Hindman. L'ordre parcial PC és similar a l'ordre definit per Pierre Matet en [4] i també al forcing de Mathias. Per això, és natural preguntar-nos si aquests ordres són equivalents o no. En el quart capítol treballem amb un ordre parcial que és equivalent a PC i que anomenem PFIN. Mostrem que PFIN té les propietats següents: (1) A partir d'un filtre genèric per a PFIN obtenim una successió infinita de conjunts finits de nombres naturals. Com en el cas del real de Mathias, aquesta successi_o ens permet reconstruir tot el filtre genèric. (2) PFIN afegeix un real de Mathias, que és un "dominating real". Ara bé, si afegim un "dominating real" afegim també un "splitting real". Aquest fet ens permet concloure que PFIN no és equivalent al forcing de Matet, ja que el forcing de Matet no afegeix "splitting reals" (3) PFIN es pot veure com una iteració de dos ordres parcials, el primer dels quals és "sigma-closed" i el segon és "sigma-centered". (4) PFIN té la "pure decision property". (5) PFIN no afegeix reals de Cohen. En el cinquè capítol demostrem que PFIN afegeix un real de Matet i, finalment, que el forcing de Mathias no afegeix reals de Matet. Això és com demostrem que el forcing de Mathias i PFIN no són ordres equivalents. Al final del capítol donem una aplicació de PFIN. Demostrem que un cert ordre definit per Saharon Shelah en [7], que anomenem M2, és una projecció de PFIN. Això implica que si G és un filtre PFIN-genèric sobre V, l'extensió V [G] conté també un filtre genèric per a M2. L'ordre M2 és una mena de producte de dues cópies del forcing de Mathias. REFERÈNCIES [1] J.E. Baumgartner. A short proof of Hindman's theorem, Journal of Combinatorial Theory, 17: 384-386, (1974). [2] R.L. Graham and B.L. Rothschild. Ramsey's theorem for m-parameter sets, Transaction American Mathematical Society, 159: 257-292, (1971). [3] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974). [4] P. Matet. Some _lters of partitions, The Journal of Symbolic Logic, 53: 540-553, (1988). [5] A.R.D. Mathias. Happy families, Annals of Mathematical Logic, 12: 59-111, (1977). [6] F.P. Ramsey. On a problem of formal logic, London Mathematical Society, 30:264_D286, 1930. [7] S. Shelah and O. Spinas. The distributivity numbers of finite products of P(!)=fin, Fundamenta Mathematicae, 158:81_D93, 1998.
Owens, Kayla Denise. "Properties of the Zero Forcing Number." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2216.
Full textSchuerger, Houston S. "Contributions to Geometry and Graph Theory." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1707341/.
Full textPoveda, Ruzafa Alejandro. "Contributions to the theory of Large Cardinals through the method of Forcing." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670765.
Full textEl-Sharif, Najla Saleh Ahmed. "Second-order methods for some nonlinear second-order initial-value problems with forcing." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309501.
Full textLambie-Hanson, Christopher. "Covering Matrices, Squares, Scales, and Stationary Reflection." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/368.
Full textZhang, Yanyan. "Periodic Forcing of a System near a Hopf Bifurcation Point." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1291174795.
Full textZimmermann, Urs [Verfasser]. "Colloids in Non-Equilibrium: Dynamical Density Functional Theory of Colloidal Suspensions under External Forcing / Urs Zimmermann." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2018. http://d-nb.info/1151698288/34.
Full textJaber, Guilhem. "A logical study of program equivalence." Thesis, Nantes, Ecole des Mines, 2014. http://www.theses.fr/2014EMNA0124/document.
Full textProving program equivalence for a functional language with references is a notoriously difficult problem. The goal of this thesis is to propose a logical system in which such proofs can be formalized, and in some cases inferred automatically. In the first part, a generic extension method of dependent type theory is proposed, based on a forcing interpretation seen as a presheaf translation of type theory. This extension equips type theory with guarded recursive constructions, which are subsequently used to reason on higher-order references. In the second part, we define a nominal game semantics for a language with higher-order references. It marries the categorical structure of game semantics with a trace representation of denotations of programs, which can be computed operationally and thus have good modularity properties. Using this semantics, we can prove the completeness of Kripke logical relations defined in a direct way, using guarded recursive types, without using biorthogonality. Such a direct definition requires omniscient worlds and a fine control of disclosed locations. Finally, we introduce a temporal logic which gives a framework to define these Kripke logical relations. The problem of contextual equivalence is then reduced to the satisfiability of an automatically generated formula defined in this logic, i.e. to the existence of a world validating this formula. Under some conditions, this satisfiability can be decided using a SMT solver. Completeness of our methods opens the possibility of getting decidability results of contextual equivalence for some fragments of the language, by giving an algorithm to build such worlds
Sexton, William Nelson. "The Minimum Rank of Schemes on Graphs." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4402.
Full textMalloy, Nicole Andrea. "Minimum Rank Problems for Cographs." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3873.
Full textLellouch, Gabriel. "Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS220.
Full textOne of the main dynamical invariants related to a surface homeomorphism isotopic to identity is its rotation set, which describes the asymptotic average speeds and directions with which the points “rotate” around the surface under the action of the homeomorphism. On the torus in particular, many results link the shape or the size of the rotation set to dynamical properties of the homeomorphism. The aim of this thesis is to generalize to the case of surfaces of genus _ 2 a certain number of results, well-known on the torus, for homeomorphisms with a “big” rotation set : positivity of the entropy, realization of rotation vectors by periodic points, bounded deviations, etc. The leading tool used is the forcing theory by Le Calvez and Tal, based on the construction of a transverse foliation and the study of trajectories of points relatively to this foliation. The first two chapters present some preliminary results in this general context. In chapter 3, we conduct a general study on the asymptotic cycles of points whose trajectories have homological directions that intersect. We show that this situation is sufficient to ensure the positivity of the entropy, which leads us to derive a generalization of two well-known results on the torus, Llibre-Mackay and Franks theorems. Finally, in chapter 4, we use this last result to show that a homeomorphism for which 0 lies in the interior of the rotation set has bounded deviations, generalizing again a well-known property on the torus. We conclude with some consequences of this result
Walker, Kevin R. "Climatic Dependence of Terrestrial Species Assemblage Structure." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23697.
Full textMahajan, Salil. "CCM3 as applied to an idealized all land zonally symmetric planet, Terra Blanda 3." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1422.
Full textOwen, Robert. "Outer model theory and the definability of forcing." 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.
Full textHrus̆ák, Michael. "Rendezvous with madness." 1999. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.
Full textTypescript. Includes bibliographical references (leaves 87-93). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ43427.
Doucha, Michal. "Forcing, deskriptivní teorie množin, analýza." Doctoral thesis, 2013. http://www.nusl.cz/ntk/nusl-329275.
Full textTragou, Eleni-Anthi. "The buoyancy forcing and dynamical response of the Red Sea." Thesis, 1998. https://dspace.library.uvic.ca//handle/1828/8801.
Full textGraduate
Rees, Timothy. "Internal Wave Generation and Near-Resonant Interactions: Theory and Applications." Thesis, 2011. http://hdl.handle.net/10012/5888.
Full textGintautas, Vadas. "Experimental evidence for mixed reality states in an interreality system, and, generalized resonant forcing of nonlinear dynamics /." 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337760.
Full textSource: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6887. Adviser: Alfred Huebler. Includes bibliographical references (leaves 73-76) Available on microfilm from Pro Quest Information and Learning.
Steinberg, Matías Uriel. "Automatización para el entorno Isabelle / ZF." Bachelor's thesis, 2021. http://hdl.handle.net/11086/17550.
Full textAl formalizar en Isabelle/ZF las definiciones asociadas a Forcing para demostrar la independencia de la Hipótesis del Continuo, se presenta una cantidad significativa de tareas sistemáticas y repetitivas, entre las que se destacan la relativización de términos y predicados, por un lado, y la síntesis de fórmulas internalizadas, por el otro. Por lo tanto, se desea evitar el trabajo manual todo lo posible. Este trabajo consiste en brindar herramientas automáticas que se encarguen de dichas tareas y minimicen la cantidad de intervenciones manuales requeridas. Más aún, se justificará con cierto grado de formalidad la corrección de los métodos implementados, y también se detallará la intuición detrás de las partes más complejas. Finalmente, se mostrará cuál es la disciplina a seguir a la hora de utilizar los comandos implementados.
When the definitions regarding Forcing are being formalised in Isabelle/ZF, in order to prove the independence of the Continuum Hypothesis, a lot of systematic and repetitive tasks are required. Among them, relativization of terms and predicates, on the one hand, and synthesis of internalized formulas, on the other hand, are the most important ones. Thus, it is desired to reduce manual intervention as much as possible. In this thesis, some automatic tools will be provided to take care of those tasks, and will reduce the amount of manual interventions required. Furthermore, the soundness of the implemented methods will be formally justified, and the intuition behind the most complex parts will also be detailed. Finally, the whole discipline to use the commands will be shown.
publishedVersion
Fil: Steinberg, Matías Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Karthikeyan, P. "A New Approach To Process Modelling And Simulation Of Metal Forming." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1245.
Full textGlivická, Jana. "Logické základy forcingu." Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-324411.
Full textBouška, David. "Limity tříd konečných struktur v teorii modelů." Master's thesis, 2019. http://www.nusl.cz/ntk/nusl-406283.
Full textGunther, Emmanuel. "Formalización de fundaciones de la matemática y compiladores correctos por construcción." Doctoral thesis, 2019. http://hdl.handle.net/11086/14372.
Full textDentro de las teorías fundacionales de la matemática se encuentran la Teoría de Conjuntos y la Teoría de Tipos. La primera es bien conocida en la comunidad matemática; la teoría de tipos además de ser una posible fundación, es una base para lenguajes de programación lo suficientemente expresivos para enunciar teoremas, escribir sus pruebas y que su corrección sea verificada automáticamente. Esta tesis resume tres trabajos independientes pero relacionados entre sí. El primero consiste en el desarrollo de una metodología para definir compiladores correctos por construcción mediante el uso de tipos dependientes. Gracias a la expresividad de estos sistemas de tipos refinamos los lenguajes fuente y destino con su semántica; el tipo de la función de compilación es exactamente la preservación de la semántica. Matemáticamente podemos concebir los lenguajes como álgebras de términos de una signatura y al compilador como el homomorfismo inducido por la interpretación de una signatura en la otra. Esto nos llevó a formalizar en Agda una librería para Álgebra Universal Heterogénea, incluyendo las principales definiciones y resultados básicos, un sistema deductivo para un cálculo ecuacional y las nociones de morfismos entre signaturas y álgebras reducto. El último aporte de la tesis surge del estudio de uno de los problemas más famosos en la teoría de conjuntos: la independencia de la hipótesis del continuo (CH) respecto a la teoría ZFC. Gödel y Cohen demostraron, respectivamente, que no puede refutarse ni probarse CH en ZFC. Cohen desarrolló para ello la técnica de Forcing, que es la única manera conocida para extender modelos de ZFC. Si bien este desarrollo constituye uno de los avances más grandes en teoría de conjuntos, no existe hasta el momento ninguna formalización de Forcing en asistentes de prueba. Como parte de este doctorado hemos comenzado la formalización en el asistente Isabelle/ZF de la técnica de Forcing, llegando a probar que la extensión genérica satisface varios axiomas de ZF.
Set Theory and Type Theory are known as Foundations of Mathematics. The first one is well known by mathematicians; Type Theory, besides being a foundation, is the basis for programming languages expressive enough to state theorems, write their proofs and verify their correctness automatically. This thesis summarizes three works. The first one consists of the development of a methodology to define correct-by-construction compilers, using dependent types. Thanks to the expressiveness of these type systems, we refine the syntax of source and target languages by adding information of semantics at type level; then, the type of the compiler function expresses the property of correctness. We can conceive the languages as term algebras of a signature, and the compiler as the homomorphism induced by the interpretation of a signature in other. Hence we formalized in the Agda proof assistant a library of Heterogeneous Universal Algebra, including main definitions and basic results, a deductive system for equational calculus and notions of morphisms between signatures and reduct algebras. The last contribution of this thesis is motivated by the study of one of the most famous problems in set theory: the independence of the continuum hypothesis (CH) with respect to the ZFC theory. Gödel and Cohen showed that CH cannot be refuted or proven. In his work, Cohen developed the technique of forcing, the only known way to extend models of ZFC. Despite the importance of forcing in set theory, there was no mechanization in proof assistants. Our last work consists of the first steps of a complete formalization of forcing in the Isabelle proof assistant.
Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Natarajan, Lakshmi Prasad. "Low-Complexity Decoding and Construction of Space-Time Block Codes." Thesis, 2013. http://etd.iisc.ernet.in/2005/3372.
Full textPivoda, Tomáš. "Mnohost bytí: Ontologie Alaina Badioua." Doctoral thesis, 2012. http://www.nusl.cz/ntk/nusl-308479.
Full text