Academic literature on the topic 'Forging, Low-carbon steel, Stainless steel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forging, Low-carbon steel, Stainless steel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forging, Low-carbon steel, Stainless steel"
Wen, Xin Li, Jian Peng Gao, and Yuan Guo La. "Common Defect Analysis for Large Section Special Steel Forging." Materials Science Forum 898 (June 2017): 1208–14. http://dx.doi.org/10.4028/www.scientific.net/msf.898.1208.
Full textAzlan, Mohd Azwir, Andy Anak Buja, Sia Chee Kiong, Nik Hisyamudin Muhd Nor, and Jalil Azlis-Sani. "Decision Making of Screw Manufacturing for the Best Environmental and Economic Combination by Using AHP." Applied Mechanics and Materials 465-466 (December 2013): 1065–69. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.1065.
Full textStrobl, Susanne, Roland Haubner, and Wolfgang Scheiblechner. "New Steel Combinations Produced by the Damascus Technique." Advanced Engineering Forum 27 (April 2018): 14–21. http://dx.doi.org/10.4028/www.scientific.net/aef.27.14.
Full textPurwanto, Helmy. "Interface Structure in Friction Welded Joints between Stainless Steel 304 and Mild Carbon Steel." Journal of Chemical Process and Material Technology 1, no. 1 (January 27, 2022): 8. http://dx.doi.org/10.36499/jcpmt.v1i1.5881.
Full textKiong, Sia Chee, Loo Yee Lee, Siaw Hua Chong, Mohd Azwir Azlan, and Nik Hisyamudin Muhd Nor. "Decision Making with the Analytical Hierarchy Process (AHP) for Material Selection in Screw Manufacturing for Minimizing Environmental Impacts." Applied Mechanics and Materials 315 (April 2013): 57–62. http://dx.doi.org/10.4028/www.scientific.net/amm.315.57.
Full textRaj, A., B. Goswami, S. B. Kumar, and A. K. Ray. "Forge and Heat-treatments in Microalloyed Steels – A Review." High Temperature Materials and Processes 32, no. 6 (December 1, 2013): 517–31. http://dx.doi.org/10.1515/htmp-2012-0178.
Full textWang, Jing Cai, Laurent Langlois, Muhammad Rafiq, Régis Bigot, and Hao Lu. "Experimental & Numerical Study of the Hot Upsetting of Weld Cladded Billets." Key Engineering Materials 554-557 (June 2013): 287–99. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.287.
Full textWang, Zhenhua, and Yong Wang. "Hot-Deformation Behavior of High-Nitrogen Austenitic Stainless Steel under Continuous Cooling: Physical Simulation of Surface Microstructure Evolution of Superheavy Forgings during Hot Forging." Materials 12, no. 7 (April 10, 2019): 1175. http://dx.doi.org/10.3390/ma12071175.
Full textCoors, Timm, Mohamad Yusuf Faqiri, Felix Saure, Christoph Kahra, Christoph Büdenbender, Julius Peddinghaus, Vannila Prasanthan, et al. "Investigations on Additively Manufactured Stainless Bearings." Coatings 12, no. 11 (November 8, 2022): 1699. http://dx.doi.org/10.3390/coatings12111699.
Full textFarahat, Ahmed Ismail Zaky, Osama Hamed, Ahmed El-Sisi, and Mohamed Hawash. "Effect of hot forging and Mn content on austenitic stainless steel containing high carbon." Materials Science and Engineering: A 530 (December 2011): 98–106. http://dx.doi.org/10.1016/j.msea.2011.09.049.
Full textDissertations / Theses on the topic "Forging, Low-carbon steel, Stainless steel"
Bassan, Fabio. "Optimization of industrial processes for forging of carbon and stainless steels." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423990.
Full textLa possibilità di produrre componenti in acciaio inossidabile a costo limitato e caratterizzati da elevate proprietà meccaniche, ha assunto notevole importanza negli ultimi anni. Al giorno d'oggi, i processi di stampaggio a freddo e a semicaldo di acciai al carbonio sono ampiamente usati per produrre componenti industriali, grazie ai loro vantaggi economici, ma è ancora assente in letteratura un'ampia ricerca di nuovi metodi di progettazione industriale di processi di deformazione plastica a freddo e a semicaldo di prodotti in acciaio inossidabile, con la successiva valutazione delle proprietà microstrutturali. Negli ultimi decenni, l'industria dei processi di stampaggio è cambiata rapidamente. Ora i processi produttivi near-net-shape o net-shape stanno diventando una pratica utile nella formatura dei metalli, garantendo notevoli risparmi di materiale ed energetici. Molti componenti, ottenuti con lavorazioni per asportazione di truciolo, possono essere prodotti a basso costo mediante stampaggio a freddo o a semicaldo. Tradizionalmente, la progettazione dei processi di forgiatura avviene utilizzando linee guida empiriche, basate sull'esperienza e su tentativi trail-and-error da parte dei progettisti, che si traducono poi in tempi di sviluppo del processi e costi di produzione elevati. Per evitare ciò, negli ultimi anni, gli approcci di simulazione numerica si sono dimostrati strumenti potenti per prevedere e analizzare la deformazione del materiale mediante processo di formatura. Attualmente sul mercato sono presenti molti pacchetti commerciali adatti a simulare i processi di forgiatura dei metalli e la maggior parte di essi sono concentrati sulla previsione della forma del prodotto finale dopo operazioni di formatura semplici o complesse, mono- o multi-stadio. Altri aspetti vengono inclusi in questi modelli numerici, quali una migliore comprensione del comportamento del materiale, delle condizioni di attrito e lubrificazione e delle proprietà del prodotto finale, per poter prevedere fenomeni più complicati come la stima della vita dell'utensile, delle condizioni di frattura duttile e la valutazione della microstruttura. Lo scopo della presente tesi di dottorato è lo sviluppo di un approccio innovativo basato sulla progettazione di procedure sperimentali integrate con strumenti di modellazione numerica, per riprogettare accuratamente una serie di processi di forgiatura industriali mono-stadio adatti alla produzione di componenti in acciaio inossidabile a diverse temperature. Inoltre è stata effettuata la riprogettazione di un processo di formatura multi-stadio a freddo di un acciaio a basso tenore di carbonio, con la successiva previsione dei difetti superficiali che si verificano in ogni fase della sequenza di formatura. A tale scopo sono stati condotti una serie di test di trazione, per valutare l'influenza della temperatura e della velocità di deformazione sulle proprietà elasto-plastiche dei materiali considerati. Inoltre è stato realizzato un innovativo apparato sperimentale per riprodurre le condizioni di attrito reali all'interfaccia tra lo spezzone e l'utensile, al fine di prevedere con precisione il flusso del metallo in fase di deformazione plastica. I dati sperimentali sono stati validati e implementati in un software commerciale agli elementi finiti 3D-FE e successivamente calibrati con precisione, per effettuare accurate simulazioni numeriche dei processi di riferimento. I componenti forgiati ottenuti sono stati oggetto di indagini macro e microstrutturali, per valutare l'eventuale presenza di difetti superficiali, e analizzare l'evoluzione microstrutturale della fase α e γ a diverse temperature di forgiatura (i.e. 20, 400, 500, 600, 700 °C). I risultati sperimentali sono stati successivamente validati mediante simulazione numerica. I materiali studiati in questo lavoro sono: acciaio ferritico-perlitico AISI 1005 a basso tenore di carbonio (Wr. N. 1.0303), AISI 304L austenitico (Wr. N. 1.4307) e ferritico-austenitico Duplex 2205 (Wr. N. 1.4462). Le prove sperimentali sviluppate sono adatte ad una corretta valutazione del comportamento degli acciai in termini di proprietà meccaniche, calibrando con precisione i modelli numerici se applicate a processi industriali di forgiatura tradizionali e riprogettati. Le tecniche utilizzate in questo lavoro prevedono: test di trazione, test di compressione T-shape, controlli visivi (mediante calibro cinquantesimale e micrometro), misure di durezza e microdurezza, microscopia ottica (LOM), microscopia elettronica a scansione ad emissione di campo (FEG-ESEM), spettroscopia a dispersione di energia (EDS), diffrazione da retrodiffusione elettronica (EBSD) e modelli numerici sviluppati in FORGE2011®-3D.
Liu, Jikai. "Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00833206.
Full textGentil, Johannes Axel. "Surface Modification of Superaustenitic and Maraging Stainless Steels by Low-Temperature Gas-Phase Carburization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1228456491.
Full textAktakka, Gulgun. "Analysis Of Warm Forging Process." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607061/index.pdf.
Full textC for automotive industry and have been made of 1020 carbon steel, is analyzed by the finite volume analysis software for a temperature range of 850-1200°
C. Experimental study has been conducted for the same temperature range in a forging company. A good agreement for the results has been observed.
Abdelghany, K. "Evaluating the properties of products fabricated from commercial steel powders using the selective laser micro-welding rapid manufacturing technique." Journal for New Generation Sciences, Vol 8, Issue 1: Central University of Technology, Free State, Bloemfontein, 2010. http://hdl.handle.net/11462/546.
Full textSelective laser micro-welding (SLMW) is a recent rapid manufacturing technique that produces metal parts through the use of a laser beam that selectively scans over the powder layers and fully melts and micro-welds the metallic particles. The advantage of SLMW is that any type of commercial steel alloys or other metal powders can be used to build parts in a single step without the need to add low melting point additives to join the particles as in the former SLS process. In this study, two types of low cost general purpose powders were evaluated as the raw materials for the selective laser micro-welding (SLMW): one powder is AISI304 stainless steel powder from Hoganas, Belgium (cost = $11/kg) and the other isAISI100510w carbon steel locally produced in-house from scrap steel using gas atomizing then de-oxidizing techniques (cost = $1.2/kg). Twelve sample parts were fabricated using two different laser speeds, 70 and 100 mm/s. Dimensions, density, hardness, tensile and microstructure properties were evaluated. Results showed that both powders successfully produced complete parts with accurate dimensions and fine details. Both microstructure phases were austenite due to the rapid heating and cooling cycles. At the higher speed of 100 mm/s mechanical properties deteriorated because of the porosities inside the structure. Using low cost powders gives more potential for the SLMW to spread as an economical manufacturing process in the near future.
Gallovits, Chabchoub Myriam. "Oxydation d'aciers faiblement alliés et d'aciers inoxydables par plasma type Glidarc; analyse spectroscopique de la couche d'oxydes développée et du plasma." Rouen, 1996. http://www.theses.fr/1996ROUES078.
Full textDOQUET-DARIDON, VERONIQUE. "Comportement et endommagement de deux aciers a structure cubique centree et cubique a faces centrees, en fatigue oligocyclique, sous chargement multiaxial non-proportionnel." Paris, ENMP, 1989. http://www.theses.fr/1989ENMP0137.
Full textChen, Ching-Lien, and 陳慶鍊. "Optimization of MIG-Flux Welding Process for Joining of Low Carbon Steel and Stainless Steel." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/69699398397734179685.
Full text國立交通大學
工學院碩士在職專班精密與自動化工程組
98
The purpose of this research is to study the effect of adding several fluxes on the weld penetration and mechanical properties of SAE 1020 low-carbon steel and AISI 304 stainless steel. Butt joint argon MIG(Metal Inert Gas) welding process was made on low-carbon steel SAE 1020 and stainless steel AISI 304 plate. The activating fluxes used in the experiment were MnO2, MgCO3, Cr2O3, MoS2, NiO, MoO3, MgO, Fe2O3, ZnO, SiO2 and TiO2. The experiment found that when using torch moving speed of 346 mm/min and welding voltage of 23.3 V, it will be better mechanical properties. The flux MnO2 is the best of all fluxes according to the weld depth/width ratio(D/W ratio) and reduce the weld FN(ferrite content). The mixed fluxes MoS2-MoO3 can enhance the welding penetration and fusion zone, and it can improve the mechanical properties of the weld micro-hardness and FN. Finally, by employing the Taguchi Methods to achieve optimized welding penetration and the D/W ratio, which were welding voltages, argon flow rate, welding torch travel speed and the weight ratio of MoS2 and MoO3. From the results of Taguchi Methods experiment, the optimal welding parameters for joining of the SAE 1020 carbon steel and the AISI 304 austenitic stainless steel are (1) welding voltages of 21.4 V; (2) argon flow rate of 8 l/min; (3) welding torch travel speed of 403 mm/min; and (4) mixed powder combination of 20% MoS2 and 80% MoO3. Beside, from the results of analysis of variance (ANOVA), the orders of the importance on the D/W ratio of weld pool geometry within the four control factors are (1) welding voltages; (2) mixed powder; (3) welding torch travel speed; and (4) argon flow rate.
NGUYEN, QUOC MANH, and 阮國猛. "Study of Aluminum-Stainless Steel and Aluminum-Low Carbon Steel Dissimilar Weld Quality Using MIG and TIG process." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/14029480643523794954.
Full text國立高雄應用科技大學
機械與精密工程研究所
104
Butt joints of the A5052 aluminum alloy and the SS400 steel, along with a new type of chamfered edge are formed by means of metal inert gas welding (MIG) and the use of the ER4043 Al-Si filler metal. The micro-hardness and micro-structure of the joint are investigated. An inter-metallic layer is found on the surface of the welding seam and the SS400 steel sheet. The hardness of the inter-metallic layer is examined using the Vickers hardness test. The average hardness values within and without the Intermetallic (IMC) layer zone were found to be higher than those of the ER4043 welding wire. The tensile strength test showed a fracture at the inter-metallic layer when the tensile strength is rated at 225.9 MPa. The tensile value test indicated the average of welds was equivalent to an 85% tensile strength of the A5052 aluminum alloy. The thickness of the inter-metallic layers is non-uniform at different positions, with ranges from 1.95 to 5 μm. The quality of the butt joints is better if the inter-metallic layer is minimized. The Si crystals which appeared at the welding seam indicate that this element participated actively during the welding process, and it also contributed to the IMC layer’s overall formation. The T-joint of the A6061 alloys and the SUS304 stainless steel utilized new welding rods of Aluma-Steel by means of the Tungsten Inert Gas (TIG) welding process. The mechanical properties, such as the characteristic of micro-structure, along with a component analysis of the welds, has been investigated by means of mechanical testing, micro-hardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). As a result, fracturing may have occurred at the adjacent area between the welding seam and the A6061 aluminum alloy plate. The average micro-hardness between the welding seam and the SUS304 stainless steel is rated at 279.72 HV, and the welding seam and the A6061 aluminum alloy is 274.50 HV. A large amount of copper elements were found to be present in the welds due to the use of the new Aluma-Steel welding rod.
Lin, Zong-Han, and 林宗翰. "Study on the Property of Extra-Low Carbon Steel Wires under Cold Forging Process." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/64cdye.
Full text高苑科技大學
機械與自動化工程研究所
102
The relationship among mechanical properties, phase ratios, and microstructures is investigated by using 3 kinds of low carbon and extra-low carbon steel wire materials which are usually applied to make screws and bolts in this study. And Electron Microscopes(EM), Energy Dispersive Spectrometers(EDS), and X-ray Diffraction Meters are provided to distinguish the types of precipitates. Moreover, the differences of the forged streamlines are observed and compared after the wire materials are formed to screws. The results show that the precipitate phase of tatanium nitrides and tatanium carbides exists in the extra-low carbon steels so that the hardness values of the extra-low carbon steel wire materials formed after cold forging raise for 10 % compared with low carbon steel wire materials. Besides, the wire materials which contain extra-low carbon steels and are mixed with Titanium elements appear course feritite grains. They can be made as cold forging machining wire materials; that is, the softened annealing treatment is not necessary, but the ductility keeps excellent. This results in a smooth forging streamline. Therefore, on the property study under different carbon content wire materials, it is the best wire materials to save a lot of money not to pay the processing cost because of no annealing treatment requirement and to be still formed through cold forging only.
Books on the topic "Forging, Low-carbon steel, Stainless steel"
Society, Iron and Steel, ed. Steel products manual.: Carbon and high strength low alloy steel. [Warrendale, PA]: Iron and Steel Society, 1991.
Find full textSociety, Iron and Steel, ed. Steel products manual.: Rolled floor plates, carbon, high strength low alloy, and alloy steel. [Warrendale, Pa.]: Iron and Steel Society, 1991.
Find full textSociety, Iron and Steel, ed. Steel products manual.: Rolled floor plates, carbon, high strength low alloy, and alloy steel. [Warrendale, Pa.]: Iron and Steel Society, 1997.
Find full textK, Chopra O., Shack W. J, U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Division of Engineering., and Argonne National Laboratory, eds. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments. Washington, DC: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textKeisler, J. Fatigue strain-life behavior of carbon and low-alloy steels, austenitic stainless steels, and alloy 600 in LWR environments. Washington, DC: U.S. Nuclear Regulatory Commission, 1995.
Find full textPlates, Rolled Floor Plates: Carbon, High Strength Low Alloy, and Alloy Steel. Iron & Steel Society, 1991.
Find full textThe 2006-2011 World Outlook for Seamless Carbon Steel and Alloy Steel Rolled-Ring Forgings Made from Purchased Iron and Steel Excluding Stainless and Hi-Temperature Forgings. Icon Group International, Inc., 2005.
Find full textSteel products manual.: Carbon, high strength low alloy, alloy uncoated, metallic coated, coil coated, coils, cut lengths, corrugated products. Warrendale, PA: Iron and Steel Society, 1996.
Find full textParker, Philip M. The 2007-2012 World Outlook for Carbon and Alloy Steel Open-Die and Smith Forgings Excluding Stainless and High-Temperature Made from Purchased Iron and Steel. ICON Group International, Inc., 2006.
Find full textThe 2006-2011 World Outlook for Carbon and Alloy Steel Open-Die and Smith Forgings Excluding Stainless and High-Temperature Made from Purchased Iron and Steel. Icon Group International, Inc., 2005.
Find full textBook chapters on the topic "Forging, Low-carbon steel, Stainless steel"
Baharudin, B. A., P. Hussain, M. Mustapha, F. Ayob, A. Ismail, F. Ab Rahman, P. Z. M. Khalid, D. A. Hamid, and M. A. Rojan. "Tensile Properties of Diffusion Bonded Duplex Stainless Steel to Low Carbon Steel." In Lecture Notes in Mechanical Engineering, 333–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0002-2_34.
Full textShimizu, Kenichi, and Tomoaki Mitani. "Application Example 19: Ferrite Precipitates in a Low-Carbon Stainless Steel." In New Horizons of Applied Scanning Electron Microscopy, 61–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03160-1_20.
Full textBose, Soumak, and Santanu Das. "Effect of Heat Input on Corrosion Resistance of 316 Austenitic Stainless Steel Cladding on Low-Carbon Steel Plate." In Lecture Notes in Mechanical Engineering, 163–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4571-7_15.
Full text"Hardenability and Heat Treatment." In Steel Castings Handbook, 24–1. 6th ed. ASM International, 1995. http://dx.doi.org/10.31399/asm.tb.sch6.t68200327.
Full text"18% chromium, 8% nickel low-carbon austenitic stainless steel." In The Alloy Tree. CRC Press, 2004. http://dx.doi.org/10.1201/9780203024010.ch1e.
Full text"Corrosion of Martensitic Stainless Steel Weldments." In Corrosion of Weldments, 115–24. ASM International, 2006. http://dx.doi.org/10.31399/asm.tb.cw.t51820115.
Full text"Extra low-carbon, 29% chromium, 4% molybdenum superferritic stainless steel." In The Alloy Tree. CRC Press, 2004. http://dx.doi.org/10.1201/9780203024010.ch7c.
Full text"Failure in Stainless Steel Welds Joining Low-Carbon Steel Handles to Type 502 Stainless Steel Covers Because of Martensite Zone in the Welds." In ASM Failure Analysis Case Histories: Processing Errors and Defects. ASM International, 2019. http://dx.doi.org/10.31399/asm.fach.process.c0047566.
Full text"Study on Screw Drill Wear When Drilling Low Carbon Stainless Steel and Accompanying Phenomena in the Cutting Zone." In International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011), 135–38. ASME Press, 2011. http://dx.doi.org/10.1115/1.859902.paper28.
Full text"Fig. 47 Jar mill. (From Ref. 53.) is needed. Occasionally, components of some formulas may require type 316 or even the more corrosion resistant type 316 L (for low carbon content) stainless steel. In some unusual instances, a product may require that the process vessel be even more resis-tant to corrosion, and exotic alloys or even glass-lined or coated equipment is neces-sary. As the degree of corrosion resistance increases, the availability of some of the." In Pharmaceutical Dosage Forms, 376. CRC Press, 1998. http://dx.doi.org/10.1201/9781420000955-57.
Full textConference papers on the topic "Forging, Low-carbon steel, Stainless steel"
Morgan, Michael J. "Effect of Hydrogen Isotopes on the Fracture Toughness Properties of Types 316L and 304L Stainless Steel Forgings." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93702.
Full textMei-fang, Chen, Cao Sheng-qiang, and Tao Zhi-yong. "Study on Forging Cracks and Manufacturing Process of 022Cr19Ni10N Austenitic Stainless Steel Rod Travel Housing Forging for Control Rod Drive Mechanism." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67286.
Full textMaitra, Debajyoti, and Phani P. Gudipati. "Stainless Steel Extrusions and Product Properties for High Pressure-High Temperature (HPHT) Applications." In ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/etam2018-6704.
Full textFrancis, R., Dr Glenn Byrne, Geoff Warburton, and Zach John Schulz. "Advanced Forging Process (AFPTM), Super Duplex Stainless Steel for Increased Low Temperature Impact Toughness and Resistance to Hydrogen Induced Stress Corrosion Cracking (HISCC) Due to Cathodic Protection of API Forgings for Subsea Applications." In OTC Brasil. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/24356-ms.
Full textKu, Francis H., Pete C. Riccardella, and Steven L. McCracken. "3D Residual Stress Simulation of an Excavate and Weld Repair Mockup." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63815.
Full textGhodsi, Mojtaba, and Sased Mohammad Reza Loghmanian. "Effect of forging on ferromagnetic properties of low-carbon steel." In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2011. http://dx.doi.org/10.1109/icmsao.2011.5775591.
Full textKu, Francis H., and Steven L. McCracken. "Crack Growth Evaluation of Remnant Cracks Underneath an Excavate and Weld Repair." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-66173.
Full textDymond, Paul, Alexandra Bauer, and David Cummings. "The Effects of Low Temperature Carbon Diffusion on Stainless Steel." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31207-ms.
Full textGarcia, C. I., T. M. Maguda, A. K. Lis, and A. J. DeArdo. "The High Strength Cold Forging Applications of a New Low Carbon Multi-Phase Steel." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920531.
Full textThien, Ngon Dang, Dat Le Quang, Toan Phan Van, and Tuan Tao Anh. "A Welding Temperature Determination Method of Low Carbon Steel and Stainless Steel Welded Joint by Rotary Friction Welding Process." In 2016 3rd International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2016. http://dx.doi.org/10.1109/gtsd.2016.55.
Full textReports on the topic "Forging, Low-carbon steel, Stainless steel"
Cullen, W. Fatigue crack growth rates of low-carbon and stainless piping steels in PWR environment. [A 516 Gr 70 carbon steel; SA 351-CF8A ss]. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/6106414.
Full text