Journal articles on the topic 'Fork reversal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fork reversal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Wenpeng, Yuichiro Saito, Jessica Jackson, et al. "RAD51 bypasses the CMG helicase to promote replication fork reversal." Science 380, no. 6643 (2023): 382–87. http://dx.doi.org/10.1126/science.add7328.
Full textSewilam, Reham S., Megan R. Reed, and Robert L. Eoff. "Abstract 1488: DNA polymerase kappa slows replication fork speed by promoting fork reversal in glioblastoma." Cancer Research 85, no. 8_Supplement_1 (2025): 1488. https://doi.org/10.1158/1538-7445.am2025-1488.
Full textBhat, Kamakoti P., and David Cortez. "RPA and RAD51: fork reversal, fork protection, and genome stability." Nature Structural & Molecular Biology 25, no. 6 (2018): 446–53. http://dx.doi.org/10.1038/s41594-018-0075-z.
Full textFierro-Fernandez, M., P. Hernandez, D. B. Krimer, A. Stasiak, and J. B. Schvartzman. "Topological locking restrains replication fork reversal." Proceedings of the National Academy of Sciences 104, no. 5 (2007): 1500–1505. http://dx.doi.org/10.1073/pnas.0609204104.
Full textQuinet, Annabel, Delphine Lemaçon, and Alessandro Vindigni. "Replication Fork Reversal: Players and Guardians." Molecular Cell 68, no. 5 (2017): 830–33. http://dx.doi.org/10.1016/j.molcel.2017.11.022.
Full textThakar, Tanay, and George-Lucian Moldovan. "The emerging determinants of replication fork stability." Nucleic Acids Research 49, no. 13 (2021): 7224–38. http://dx.doi.org/10.1093/nar/gkab344.
Full textLiu, W., A. Krishnamoorthy, R. Zhao, and D. Cortez. "Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors." Science Advances 6, no. 46 (2020): eabc3598. http://dx.doi.org/10.1126/sciadv.abc3598.
Full textBatenburg, Nicole L., Sofiane Y. Mersaoui, John R. Walker, et al. "Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells." Nucleic Acids Research 49, no. 22 (2021): 12836–54. http://dx.doi.org/10.1093/nar/gkab1173.
Full textTorres, Rubén, Carolina Gándara, Begoña Carrasco, Ignacio Baquedano, Silvia Ayora, and Juan C. Alonso. "DisA Limits RecG Activities at Stalled or Reversed Replication Forks." Cells 10, no. 6 (2021): 1357. http://dx.doi.org/10.3390/cells10061357.
Full textLe Masson, Marie, Zeynep Baharoglu, and Bénédicte Michel. "ruvAandruvBmutants specifically impaired for replication fork reversal." Molecular Microbiology 70, no. 2 (2008): 537–48. http://dx.doi.org/10.1111/j.1365-2958.2008.06431.x.
Full textDe Septenville, Anne L., Stéphane Duigou, Hasna Boubakri, and Bénédicte Michel. "Replication Fork Reversal after Replication–Transcription Collision." PLoS Genetics 8, no. 4 (2012): e1002622. http://dx.doi.org/10.1371/journal.pgen.1002622.
Full textZellweger, Ralph, Damian Dalcher, Karun Mutreja, et al. "Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells." Journal of Cell Biology 208, no. 5 (2015): 563–79. http://dx.doi.org/10.1083/jcb.201406099.
Full textKrishnamoorthy, Archana, Jessica Jackson, Taha Mohamed, Madison Adolph, Alessandro Vindigni, and David Cortez. "RADX prevents genome instability by confining replication fork reversal to stalled forks." Molecular Cell 81, no. 14 (2021): 3007–17. http://dx.doi.org/10.1016/j.molcel.2021.05.014.
Full textThangavel, Saravanabhavan, Matteo Berti, Maryna Levikova, et al. "DNA2 drives processing and restart of reversed replication forks in human cells." Journal of Cell Biology 208, no. 5 (2015): 545–62. http://dx.doi.org/10.1083/jcb.201406100.
Full textCouch, Frank B., and David Cortez. "Fork reversal, too much of a good thing." Cell Cycle 13, no. 7 (2014): 1049–50. http://dx.doi.org/10.4161/cc.28212.
Full textSogo, J. M. "Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects." Science 297, no. 5581 (2002): 599–602. http://dx.doi.org/10.1126/science.1074023.
Full textCotta-Ramusino, Cecilia, Daniele Fachinetti, Chiara Lucca, et al. "Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells." Molecular Cell 17, no. 1 (2005): 153–59. http://dx.doi.org/10.1016/j.molcel.2004.11.032.
Full textJain, Chetan K., Swagata Mukhopadhyay, and Agneyo Ganguly. "RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy." Anti-Cancer Agents in Medicinal Chemistry 20, no. 11 (2020): 1311–26. http://dx.doi.org/10.2174/1871520620666200518082433.
Full textWarren, Garrett, Richard Stein, Hassane Mchaourab, and Brandt Eichman. "Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal." International Journal of Molecular Sciences 19, no. 10 (2018): 3049. http://dx.doi.org/10.3390/ijms19103049.
Full textGrompone, Gianfranco, Dusko Ehrlich, and Bénédicte Michel. "Cells defective for replication restart undergo replication fork reversal." EMBO reports 5, no. 6 (2004): 607–12. http://dx.doi.org/10.1038/sj.embor.7400167.
Full textAtkinson, J., and P. McGlynn. "Replication fork reversal and the maintenance of genome stability." Nucleic Acids Research 37, no. 11 (2009): 3475–92. http://dx.doi.org/10.1093/nar/gkp244.
Full textBhattacharjee, Somendra M. "Interfacial instability and DNA fork reversal by repair proteins." Journal of Physics: Condensed Matter 22, no. 15 (2010): 155102. http://dx.doi.org/10.1088/0953-8984/22/15/155102.
Full textSingleton, Martin R., Sarah Scaife, and Dale B. Wigley. "Structural Analysis of DNA Replication Fork Reversal by RecG." Cell 107, no. 1 (2001): 79–89. http://dx.doi.org/10.1016/s0092-8674(01)00501-3.
Full textOlavarrieta, L. "Supercoiling, knotting and replication fork reversal in partially replicated plasmids." Nucleic Acids Research 30, no. 3 (2002): 656–66. http://dx.doi.org/10.1093/nar/30.3.656.
Full textGraham, Ambassador Thomas, and Douglas B. Shaw. "Nearing a fork in the road: Proliferation or nuclear reversal?" Nonproliferation Review 6, no. 1 (1998): 70–76. http://dx.doi.org/10.1080/10736709808436736.
Full textRay Chaudhuri, Arnab, Yoshitami Hashimoto, Raquel Herrador, et al. "Topoisomerase I poisoning results in PARP-mediated replication fork reversal." Nature Structural & Molecular Biology 19, no. 4 (2012): 417–23. http://dx.doi.org/10.1038/nsmb.2258.
Full textChen, Bo-Ruei, Annabel Quinet, Andrea K. Byrum, et al. "XLF and H2AX function in series to promote replication fork stability." Journal of Cell Biology 218, no. 7 (2019): 2113–23. http://dx.doi.org/10.1083/jcb.201808134.
Full textKhanduja, Jasbeer Singh, and K. Muniyappa. "Functional Analysis of DNA Replication Fork Reversal Catalyzed byMycobacterium tuberculosisRuvAB Proteins." Journal of Biological Chemistry 287, no. 2 (2011): 1345–60. http://dx.doi.org/10.1074/jbc.m111.304741.
Full textNeelsen, Kai J., and Massimo Lopes. "Replication fork reversal in eukaryotes: from dead end to dynamic response." Nature Reviews Molecular Cell Biology 16, no. 4 (2015): 207–20. http://dx.doi.org/10.1038/nrm3935.
Full textAmunugama, Ravindra, Smaranda Willcox, R. Alex Wu, et al. "Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading." Cell Reports 23, no. 12 (2018): 3419–28. http://dx.doi.org/10.1016/j.celrep.2018.05.061.
Full textMutreja, Karun, Jana Krietsch, Jeannine Hess, et al. "ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links." Cell Reports 24, no. 10 (2018): 2629–42. http://dx.doi.org/10.1016/j.celrep.2018.08.019.
Full textMayle, Ryan, Lance Langston, Kelly R. Molloy, Dan Zhang, Brian T. Chait, and Michael E. O’Donnell. "Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression." Proceedings of the National Academy of Sciences 116, no. 3 (2018): 798–803. http://dx.doi.org/10.1073/pnas.1819107116.
Full textQuinet, Annabel, Stephanie Tirman, Jessica Jackson, et al. "PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells." Molecular Cell 77, no. 3 (2020): 461–74. http://dx.doi.org/10.1016/j.molcel.2019.10.008.
Full textGuarino, Estrella, Israel Salguero, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Double-Strand Break Generation under Deoxyribonucleotide Starvation in Escherichia coli." Journal of Bacteriology 189, no. 15 (2007): 5782–86. http://dx.doi.org/10.1128/jb.00411-07.
Full textHonda, Masayoshi, Emeleeta A. Paintsil, and Maria Spies. "RAD52 DNA Repair Protein is a Gatekeeper that Protects DNA Replication Forks from Regression by Fork Reversal Motors." Biophysical Journal 118, no. 3 (2020): 160a. http://dx.doi.org/10.1016/j.bpj.2019.11.988.
Full textShao, Jieya, Mari Iwase, Rong Xu, and Shuyang Lin. "Abstract B017: VCP extracts the chromatin remodeler SNF2H from nascent DNA to stabilize stressed replication forks." Cancer Research 84, no. 1_Supplement (2024): B017. http://dx.doi.org/10.1158/1538-7445.dnarepair24-b017.
Full textSaldanha, Joanne, Julie Rageul, Jinal A. Patel, and Hyungjin Kim. "The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork." International Journal of Molecular Sciences 24, no. 13 (2023): 10488. http://dx.doi.org/10.3390/ijms241310488.
Full textCybulla, Emily, Jessica Jackson, Stephanie Tirman, Annabel Quinet, Delphine Lemacon, and Alessandro Vindigni. "Abstract 803: Identifying a RAD18/UBC13-dependent mechanism of replication fork recovery to modulate chemoresponse in BRCA1-deficient cancers." Cancer Research 82, no. 12_Supplement (2022): 803. http://dx.doi.org/10.1158/1538-7445.am2022-803.
Full textFollonier, Cindy, Judith Oehler, Raquel Herrador, and Massimo Lopes. "Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions." Nature Structural & Molecular Biology 20, no. 4 (2013): 486–94. http://dx.doi.org/10.1038/nsmb.2520.
Full textFierro-Fernández, Marta, Pablo Hernández, Dora B. Krimer, and Jorge B. Schvartzman. "Replication Fork Reversal Occurs Spontaneously after Digestion but Is Constrained in Supercoiled Domains." Journal of Biological Chemistry 282, no. 25 (2007): 18190–96. http://dx.doi.org/10.1074/jbc.m701559200.
Full textKile, Andrew C., Diana A. Chavez, Julien Bacal, et al. "HLTF’s Ancient HIRAN Domain Binds 3′ DNA Ends to Drive Replication Fork Reversal." Molecular Cell 58, no. 6 (2015): 1090–100. http://dx.doi.org/10.1016/j.molcel.2015.05.013.
Full textAdolph, Madison, Swati Balakrishnan, Walter Chazin, and David Cortez. "Abstract IA024: Mechanistic insights into how RADX regulates RAD51 nucleoprotein filaments to maintain genome stability and control replication stress responses." Cancer Research 84, no. 1_Supplement (2024): IA024. http://dx.doi.org/10.1158/1538-7445.dnarepair24-ia024.
Full textFlores, Maria Jose, Vladimir Bidnenko, and Bénédicte Michel. "The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants." EMBO reports 5, no. 10 (2004): 983–88. http://dx.doi.org/10.1038/sj.embor.7400262.
Full textDixit, Suruchi, Tarun Nagraj, Debanjali Bhattacharya, et al. "RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes." Cell Reports 43, no. 8 (2024): 114594. http://dx.doi.org/10.1016/j.celrep.2024.114594.
Full textTian, Tian, Min Bu, Xu Chen, et al. "The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability." Molecular Cell 81, no. 1 (2021): 198–211. http://dx.doi.org/10.1016/j.molcel.2020.11.007.
Full textRegairaz, Marie, Yong-Wei Zhang, Haiqing Fu, et al. "Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes." Journal of Cell Biology 195, no. 5 (2011): 739–49. http://dx.doi.org/10.1083/jcb.201104003.
Full textNeelsen, Kai J., Isabella M. Y. Zanini, Raquel Herrador, and Massimo Lopes. "Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates." Journal of Cell Biology 200, no. 6 (2013): 699–708. http://dx.doi.org/10.1083/jcb.201212058.
Full textWalker, John R., and Xu-Dong Zhu. "Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy." International Journal of Molecular Sciences 23, no. 18 (2022): 10212. http://dx.doi.org/10.3390/ijms231810212.
Full textGuarino, Estrella, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Defective Ribonucleoside Diphosphate Reductase Impairs Replication Fork Progression in Escherichia coli." Journal of Bacteriology 189, no. 9 (2007): 3496–501. http://dx.doi.org/10.1128/jb.01632-06.
Full textBai, Gongshi, Chames Kermi, Henriette Stoy, et al. "HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis." Molecular Cell 78, no. 6 (2020): 1237–51. http://dx.doi.org/10.1016/j.molcel.2020.04.031.
Full text