Contents
Academic literature on the topic 'Forme réelle des algèbres de Lie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forme réelle des algèbres de Lie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forme réelle des algèbres de Lie"
Loeb, Jean-Jacques. "Action d'une forme réelle d'un groupe de Lie complexe sur les fonctions plurisousharmoniques." Annales de l’institut Fourier 35, no. 4 (1985): 59–97. http://dx.doi.org/10.5802/aif.1028.
Full textROMAGNY, Matthieu, and Dajano Tossici. "Smooth affine group schemes over the dual numbers." Épijournal de Géométrie Algébrique Volume 3 (July 1, 2019). http://dx.doi.org/10.46298/epiga.2019.volume3.4792.
Full textDissertations / Theses on the topic "Forme réelle des algèbres de Lie"
Back, Valérie. "Formes réelles presque déployées d'algèbres de Lie affines." Nancy 1, 1995. http://www.theses.fr/1995NAN10090.
Full textDolivet, Yacine. "Dualités, construction de modèles et polynômes biorthogonaux en théorie des supercordes." Paris 6, 2007. http://www.theses.fr/2007PA066597.
Full textAmmari, Kaïs. "Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2256.
Full textLet K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position
Zessin, Mathias. "Sur les toupies et les p-sphères de contact." Phd thesis, Université de Haute Alsace - Mulhouse, 2004. http://tel.archives-ouvertes.fr/tel-00008469.
Full textDans la première partie nous étudions des p-sphères de contact invariantes sur des fibrés principaux en cercles. Nous classifions les fibrés principaux de dimension 3 qui admettent des p-sphères de contact invariantes et nous construisons des exemples.
Dans la partie géométrique nous étudions l'ensemble des structures de contact associées aux éléments d'un cercle de contact. Nous définissons la notion de faisceau de contact et de toupie de contact (sur une variété riemannienne). Nous classifions les variétés de dimension 3 qui admettent des toupies de contact et nous caractérisons les métriques pour lesquelles il peut y avoir des toupies de contact sur une variété donnée.
Dans la partie algébrique, nous étudions les groupes de Lie de dimensions 3 et 7 qui admettent des p-sphères de contact invariantes à gauche. Nous obtenons des résultats de classification, ainsi qu'un certain nombre d'exemples.
Nous montrons également qu'il n'existe pas de p-sphère de contact sur les variétés de dimension 4n+1 (pour p 1) et que sur les (4n-1)-sphères il existe toujours une ( (4n)-1)-sphère de contact, où est le nombre d'Adams.
Khlifi, Olfa. "Le cône diamant." Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00682548.
Full textAmmari, Kais. "Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple." Thesis, 2014. http://www.theses.fr/2014POIT2256/document.
Full textLet K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position