Journal articles on the topic 'Formic acid synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Formic acid synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Ying, Yingxi Geng, Renyong Zhao, Huabao Zheng, and Wenqiao Yuan. "Effects of Formic and Levulinic Acids on Butyric Acid Synthesis by Clostridium tyrobutyricum in Xylose Media." Transactions of the ASABE 62, no. 6 (2019): 1803–9. http://dx.doi.org/10.13031/trans.13669.
Full textHöckendorf, Robert F., Chi-Kit Siu, Christian van der Linde, O. Petru Balaj, and Martin K. Beyer. "Selective Formic Acid Synthesis from Nanoscale Electrochemistry." Angewandte Chemie 122, no. 44 (September 21, 2010): 8433–35. http://dx.doi.org/10.1002/ange.201004134.
Full textHöckendorf, Robert F., Chi-Kit Siu, Christian van der Linde, O. Petru Balaj, and Martin K. Beyer. "Selective Formic Acid Synthesis from Nanoscale Electrochemistry." Angewandte Chemie International Edition 49, no. 44 (September 21, 2010): 8257–59. http://dx.doi.org/10.1002/anie.201004134.
Full textWang, Ligeng, Jun Hu, Hualong Zhang, Qin Yu, and Chun Feng. "Green Synthesis of Haloformates from Olefins Using Formic Acid as Reactant, Protonic Acid, and Solvent." Synlett 29, no. 12 (June 7, 2018): 1611–16. http://dx.doi.org/10.1055/s-0037-1610028.
Full textJiang, Kun, Han-Xuan Zhang, Shouzhong Zou, and Wen-Bin Cai. "Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications." Phys. Chem. Chem. Phys. 16, no. 38 (2014): 20360–76. http://dx.doi.org/10.1039/c4cp03151b.
Full textLin, Hongyan, Ziling Zhou, Xiaopeng Ma, Qingqing Chen, Hongwei Han, Xiaoming Wang, Jinliang Qi, and Yonghua Yang. "One pot synthesis of aryl nitriles from aromatic aldehydes in a water environment." RSC Advances 11, no. 39 (2021): 24232–37. http://dx.doi.org/10.1039/d1ra03559b.
Full textPerich, JW, PF Alewood, and RB Johns. "Synthesis of Casein-Related Peptides and Phosphopeptides. IX. A Modified Method for the Synthesis of Ser(P) Peptides by Using Ppoc-Ser(PO3bzl2)-OH." Australian Journal of Chemistry 44, no. 3 (1991): 377. http://dx.doi.org/10.1071/ch9910377.
Full textTakale, Nilesh, Neelakandan Kaliyaperumal, Gopalakrishnan Mannathusamy, and Rajarajan Govindasamy. "A Headspace Gas Chromatographic Method for Determination of Formic Acid Content in Isosulfan Blue and Various Drug Substances." Oriental Journal of Chemistry 37, no. 02 (April 28, 2021): 321–29. http://dx.doi.org/10.13005/ojc/370209.
Full textTakale, Nilesh, Neelakandan Kaliyaperumal, Gopalakrishnan Mannathusamy, and Rajarajan Govindasamy. "A Headspace Gas Chromatographic Method for Determination of Formic acid Content in Isosulfan Blue and in Various Drugs." Oriental Journal Of Chemistry 37, no. 2 (April 30, 2021): 321–29. http://dx.doi.org/10.13005//ojc/370209.
Full textAhmed, Ajaz, Nazar Hussain, Monika Bhardwaj, Anuj Kumar Chhalodia, Amit Kumar, and Debaraj Mukherjee. "Palladium catalysed carbonylation of 2-iodoglycals for the synthesis of C-2 carboxylic acids and aldehydes taking formic acid as a carbonyl source." RSC Advances 9, no. 39 (2019): 22227–31. http://dx.doi.org/10.1039/c9ra03626a.
Full textPerich, JW, and RB Johns. "Synthesis of Casein-Related Peptides and Phosphopeptides. X. A Modified Method for the Synthesis of Ser(P)-Containing Peptides Through 4-Bromobenzyl Phosphate Protection." Australian Journal of Chemistry 44, no. 3 (1991): 389. http://dx.doi.org/10.1071/ch9910389.
Full textOtamiri, J. C., and A. Andersson. "Preparation of YBa2Cu3O6+x by a formic acid method." Journal of Materials Research 5, no. 7 (July 1990): 1388–91. http://dx.doi.org/10.1557/jmr.1990.1388.
Full textSuo, Yange, and I.-Ming Hsing. "Synthesis of bimetallic PdAu nanoparticles for formic acid oxidation." Electrochimica Acta 56, no. 5 (February 2011): 2174–83. http://dx.doi.org/10.1016/j.electacta.2010.12.037.
Full textShin, Minguk, Jeongbae Seo, Yesol Baek, Taek Lee, Min Jang, and Chulhwan Park. "Novel and Efficient Synthesis of Phenethyl Formate via Enzymatic Esterification of Formic Acid." Biomolecules 10, no. 1 (January 1, 2020): 70. http://dx.doi.org/10.3390/biom10010070.
Full textZeng, Xu, Fang Ming Jin, Han Song Yao, and Min Cheng. "Study of Catalytic Reduction of Formic Acid to Methanol under Mild Hydrothermal Conditions." Advanced Materials Research 347-353 (October 2011): 3677–80. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3677.
Full textMaleki, Behrooz, Davood Azarifar, Khodaverdian Moghaddam, Fatemeh Hojati, Mostafa Gholizadeh, and Hafezeh Salehabadi. "Synthesis and characterization of a series of 1,3,5-trisubstituted-2-pyrazolines derivatives using methanoic acid under thermal condition." Journal of the Serbian Chemical Society 74, no. 12 (2009): 1371–76. http://dx.doi.org/10.2298/jsc0912371m.
Full textIslam, Md Tariqul, Jose A. Rosales, Ricardo Saenz-Arana, Shahrouz J. Ghadimi, and Juan C. Noveron. "Rapid synthesis of ultrasmall platinum nanoparticles supported on macroporous cellulose fibers for catalysis." Nanoscale Advances 1, no. 8 (2019): 2953–64. http://dx.doi.org/10.1039/c9na00124g.
Full textKarthikeyan, Iyyanar, Dhanarajan Arunprasath, and Govindasamy Sekar. "An efficient synthesis of pyrido[1,2-a]indoles through aza-Nazarov type cyclization." Chemical Communications 51, no. 9 (2015): 1701–4. http://dx.doi.org/10.1039/c4cc08783f.
Full textSönmez Çelebi, Mutlu, and Ayşe Nur Yılmaz. "PVF-PPy Composite as Support Material for Facile Synthesis of Pt@PVF-PPy Catalyst and Its Electrocatalytic Activity Towards Formic Acid Oxidation." Journal of New Materials for Electrochemical Systems 21, no. 3 (July 31, 2018): 157–62. http://dx.doi.org/10.14447/jnmes.v21i3.502.
Full textPopovic, Ksenija, and Jelena Lovic. "Formic acid oxidation at platinum-bismuth catalysts." Journal of the Serbian Chemical Society 80, no. 10 (2015): 1217–49. http://dx.doi.org/10.2298/jsc150318044p.
Full textKang, F., Y. Leng, and T. Y. Zhang. "Electrochemical synthesis and characterization of formic acid-graphite intercalation compound." Carbon 35, no. 8 (1997): 1089–96. http://dx.doi.org/10.1016/s0008-6223(97)00065-1.
Full textEdwards, James F., and G. L. Schrader. "Methanol, formaldehyde, and formic acid adsorption on methanol synthesis catalysts." Journal of Physical Chemistry 89, no. 5 (February 1985): 782–88. http://dx.doi.org/10.1021/j100251a015.
Full textWu, Dengfeng, Changqing Dai, Shaojie Li, and Daojian Cheng. "Shape-controlled Synthesis of PdCu Nanocrystals for Formic Acid Oxidation." Chemistry Letters 44, no. 8 (August 5, 2015): 1101–3. http://dx.doi.org/10.1246/cl.150386.
Full textDan, Ananya, and P. K. Sengupta. "Synthesis and characterization of polyaniline prepared in formic acid medium." Journal of Applied Polymer Science 91, no. 2 (2003): 991–99. http://dx.doi.org/10.1002/app.13204.
Full textBarlocco, Ilaria, Sofia Capelli, Elisa Zanella, Xiaowei Chen, Juan J. Delgado, Alberto Roldan, Nikolaos Dimitratos, and Alberto Villa. "Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenation." Journal of Energy Chemistry 52 (January 2021): 301–9. http://dx.doi.org/10.1016/j.jechem.2020.04.031.
Full textWu, Fengxia, Jianping Lai, Ling Zhang, Wenxin Niu, Baohua Lou, Rafael Luque, and Guobao Xu. "Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation." Nanoscale 10, no. 19 (2018): 9369–75. http://dx.doi.org/10.1039/c8nr00385h.
Full textSadeghi, Samira, Meghdad Karimi, Iman Radfar, Reza Ghahremani Gavinehroudi, Dariush Saberi, and Akbar Heydari. "Efficient strategy for interchangeable roles in a green and sustainable redox catalytic system: IL/PdII-decorated SBA-15 as a mesoporous nanocatalyst." New Journal of Chemistry 45, no. 15 (2021): 6682–92. http://dx.doi.org/10.1039/d0nj05459c.
Full textMardini, Nour, and Yusuf Bicer. "Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell." International Journal of Hydrogen Energy 46, no. 24 (April 2021): 13050–60. http://dx.doi.org/10.1016/j.ijhydene.2021.01.124.
Full textGromov, Nikolay V., Tatiana B. Medvedeva, Yulia A. Rodikova, Dmitrii E. Babushkin, Valentina N. Panchenko, Maria N. Timofeeva, Elena G. Zhizhina, Oxana P. Taran, and Valentin N. Parmon. "One-pot synthesis of formic acid via hydrolysis–oxidation of potato starch in the presence of cesium salts of heteropoly acid catalysts." RSC Advances 10, no. 48 (2020): 28856–64. http://dx.doi.org/10.1039/d0ra05501h.
Full textLi, Si-jia, Yun Ping, Jun-Min Yan, Hong-Li Wang, Ming Wu, and Qing Jiang. "Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid." Journal of Materials Chemistry A 3, no. 28 (2015): 14535–38. http://dx.doi.org/10.1039/c5ta03111g.
Full textEnteshari, Maryam, and Sergio I. Martínez-Monteagudo. "One-Pot Synthesis of Lactose Derivatives from Whey Permeate." Foods 9, no. 6 (June 13, 2020): 784. http://dx.doi.org/10.3390/foods9060784.
Full textPeng, Guowen, Lang Xu, Vassiliki-Alexandra Glezakou, and Manos Mavrikakis. "Mechanism of methanol synthesis on Ni(110)." Catalysis Science & Technology 11, no. 9 (2021): 3279–94. http://dx.doi.org/10.1039/d1cy00107h.
Full textBlohm, Sascha, Thomas Heinze, and Haisong Qi. "Starch Formates: Synthesis and Modification." Molecules 26, no. 16 (August 12, 2021): 4882. http://dx.doi.org/10.3390/molecules26164882.
Full textYang, Qian, Lijie Shi, Beibei Yu, Jun Xu, Cong Wei, Yawen Wang, and Hongyu Chen. "Correction: Facile synthesis of ultrathin Pt–Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction." Journal of Materials Chemistry A 8, no. 22 (2020): 11460. http://dx.doi.org/10.1039/d0ta90113j.
Full textYe, Wanyue, Wei Pei, Si Zhou, He Huang, Qian Li, Jijun Zhao, Rongwen Lu, Yuzhen Ge, and Shufen Zhang. "Controlling the synthesis of uniform electron-deficient Pd clusters for superior hydrogen production from formic acid." Journal of Materials Chemistry A 7, no. 17 (2019): 10363–71. http://dx.doi.org/10.1039/c9ta02035g.
Full textEmbrechts, Heidemarie, Martin Kriesten, Matthias Ermer, Wolfgang Peukert, Martin Hartmann, and Monica Distaso. "In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al)." RSC Advances 10, no. 13 (2020): 7336–48. http://dx.doi.org/10.1039/c9ra09968a.
Full textSohilait, Hanoch J., Hardjono Sastrohamidjojo, Sabirin Matsjeh, and J. Stuart Grossert. "SYNTHESIS of 3.4-METHYLENEDIOXYPHENYL-2-PROPANONE from SAFROLE." Indonesian Journal of Chemistry 1, no. 3 (June 5, 2010): 145–48. http://dx.doi.org/10.22146/ijc.21941.
Full textLee, Jin-Yeon, Da-Hee Kwak, Young-Woo Lee, Seul Lee, and Kyung-Won Park. "Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions." Physical Chemistry Chemical Physics 17, no. 14 (2015): 8642–48. http://dx.doi.org/10.1039/c5cp00892a.
Full textShi, Lei, Dong Sun, Yuxin Wang, Yisheng Tan, Jie Li, Shirun Yan, Ronggang Fan, and Noritatsu Tsubaki. "Formic acid-assisted synthesis of highly efficient Cu/ZnO catalysts: effect of HCOOH/Cu molar ratios." Catalysis Science & Technology 6, no. 13 (2016): 4777–85. http://dx.doi.org/10.1039/c5cy02010g.
Full textYadav, Dolly, Abhishek Kumar, Jae Young Kim, No-Joong Park, and Jin-Ook Baeg. "Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis." Journal of Materials Chemistry A 9, no. 15 (2021): 9573–80. http://dx.doi.org/10.1039/d1ta00802a.
Full textHaidukevich, V. A., S. K. Petkevich, E. G. Karankevich, P. V. Kurman, Z. I. Kuvaeva, V. I. Potkin, and V. A. Knizhnikov. "Synthesis of acylic derivatives of prolylleucylglycinamide." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 55, no. 4 (December 6, 2019): 429–35. http://dx.doi.org/10.29235/1561-8331-2019-55-4-429-435.
Full textGautam, Prashant, and Vivek Srivastava. "Active γ –Alumina -Supported Ru Nanoparticles for CO2 Hydrogenation Reaction." Letters in Organic Chemistry 17, no. 8 (August 18, 2020): 603–12. http://dx.doi.org/10.2174/1570178617666191107112429.
Full textZhang, Lei, Shengnan Yu, Jijie Zhang, and Jinlong Gong. "Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities." Chemical Science 7, no. 6 (2016): 3500–3505. http://dx.doi.org/10.1039/c6sc00083e.
Full textLi, Hao-Peng, Han-Jun Ai, Xinxin Qi, Jin-Bao Peng, and Xiao-Feng Wu. "Palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones from 2-hydroxybenzyl alcohols using formic acid as the CO source." Organic & Biomolecular Chemistry 15, no. 6 (2017): 1343–45. http://dx.doi.org/10.1039/c6ob02782b.
Full textSingh, Amit Kumar, Saptak Rarotra, Viswanath Pasumarthi, Tapas Kumar Mandal, and Dipankar Bandyopadhyay. "Formic acid powered reusable autonomous ferrobots for efficient hydrogen generation under ambient conditions." Journal of Materials Chemistry A 6, no. 19 (2018): 9209–19. http://dx.doi.org/10.1039/c8ta02205d.
Full textBao, Shixiong, Xuan Yang, Ming Luo, Shan Zhou, Xue Wang, Zhaoxiong Xie, and Younan Xia. "Shape-controlled synthesis of CO-free Pd nanocrystals with the use of formic acid as a reducing agent." Chemical Communications 52, no. 85 (2016): 12594–97. http://dx.doi.org/10.1039/c6cc07055h.
Full textLewis, David E., and Glen C. Gullickson. "Synthesis ofN-Benzhydrylamides from Nitriles by Ritter Reactions in Formic Acid." Synthesis, no. 5 (2003): 0681–84. http://dx.doi.org/10.1055/s-2003-38069.
Full textLiu, Xinyue, Changqing Dai, Dengfeng Wu, Adrian Fisher, Zhiping Liu, and Daojian Cheng. "Facile Synthesis of PdAgCo Trimetallic Nanoparticles for Formic Acid Electrochemical Oxidation." Chemistry Letters 45, no. 7 (July 5, 2016): 732–34. http://dx.doi.org/10.1246/cl.160243.
Full textWang, Qinchao, Yiqian Wang, Peizhi Guo, Qun Li, Ruixue Ding, Baoyan Wang, Hongliang Li, Jingquan Liu, and X. S. Zhao. "Formic Acid-Assisted Synthesis of Palladium Nanocrystals and Their Electrocatalytic Properties." Langmuir 30, no. 1 (January 3, 2014): 440–46. http://dx.doi.org/10.1021/la404268j.
Full textMazumder, Vismadeb, and Shouheng Sun. "Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation." Journal of the American Chemical Society 131, no. 13 (April 8, 2009): 4588–89. http://dx.doi.org/10.1021/ja9004915.
Full text