Academic literature on the topic 'Formines'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Formines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Formines"

1

van Romburgh, P. "Sur les formines de glycérine." Recueil des Travaux Chimiques des Pays-Bas 1, no. 8 (September 6, 2010): 186–87. http://dx.doi.org/10.1002/recl.18820010802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silkworth, William T., Kristina L. Kunes, Grace C. Nickel, Martin L. Phillips, Margot E. Quinlan, and Christina L. Vizcarra. "The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation." Molecular Biology of the Cell 29, no. 5 (March 2018): 610–21. http://dx.doi.org/10.1091/mbc.e17-06-0363.

Full text
Abstract:
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
APA, Harvard, Vancouver, ISO, and other styles
3

Isogai, Tadamoto, and Metello Innocenti. "New nuclear and perinuclear functions of formins." Biochemical Society Transactions 44, no. 6 (December 2, 2016): 1701–8. http://dx.doi.org/10.1042/bst20160187.

Full text
Abstract:
Formin family proteins (formins) represent an evolutionary conserved protein family encoded in the genome of a wide range of eukaryotes. Formins are hallmarked by a formin homology 1 (FH1) domain juxtaposed to an FH2 domain whereby they control actin and microtubule dynamics. Not surprisingly, formins are best known as key regulators of the cytoskeleton in a variety of morphogenetic processes. However, mounting evidence implicates several formins in the assembly and organization of actin within and around the nucleus. In addition, actin-independent roles for formins have recently been discovered. In this mini-review, we summarize these findings and highlight the novel nuclear and perinulcear functions of formins. In light of the emerging new biology of formins, we also discuss the fundamental principles governing the versatile activity and multimodal regulation of these proteins.
APA, Harvard, Vancouver, ISO, and other styles
4

Vizcarra, Christina L., Batbileg Bor, and Margot E. Quinlan. "The Role of Formin Tails in Actin Nucleation, Processive Elongation, and Filament Bundling." Journal of Biological Chemistry 289, no. 44 (September 22, 2014): 30602–13. http://dx.doi.org/10.1074/jbc.m114.588368.

Full text
Abstract:
Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.
APA, Harvard, Vancouver, ISO, and other styles
5

Sherer, Laura A., Mark E. Zweifel, and Naomi Courtemanche. "Dissection of two parallel pathways for formin-mediated actin filament elongation." Journal of Biological Chemistry 293, no. 46 (September 28, 2018): 17917–28. http://dx.doi.org/10.1074/jbc.ra118.004845.

Full text
Abstract:
Formins direct the elongation of unbranched actin filaments that are incorporated into a diverse set of cytoskeletal structures. Elongation of formin-bound filaments occurs along two parallel pathways. The formin homology 2 (FH2) pathway allows actin monomers to bind directly to barbed ends bound by dimeric FH2 domains. The formin homology 1 (FH1) pathway involves transfer of profilin-bound actin to the barbed end from polyproline tracts located in the disordered FH1 domains. Here, we used a total internal reflection fluorescence (TIRF) microscopy-based fluorescence approach to determine the fraction of actin subunits incorporated via the FH1 and FH2 pathways during filament elongation mediated by two formins. We found that the fraction of filament elongation that occurs via each pathway directly depends on the efficiency of the other pathway, indicating that these two pathways compete with each other for subunit addition by formins. We conclude that this competition allows formins to compensate for changes in the efficiency of one pathway by adjusting the frequency of subunit addition via the other, thus increasing the overall robustness of formin-mediated actin polymerization.
APA, Harvard, Vancouver, ISO, and other styles
6

Kollárová, Eva, Anežka Baquero Forero, Lenka Stillerová, Sylva Přerostová, and Fatima Cvrčková. "Arabidopsis Class II Formins AtFH13 and AtFH14 Can Form Heterodimers but Exhibit Distinct Patterns of Cellular Localization." International Journal of Molecular Sciences 21, no. 1 (January 5, 2020): 348. http://dx.doi.org/10.3390/ijms21010348.

Full text
Abstract:
Formins are evolutionarily conserved multi-domain proteins participating in the control of both actin and microtubule dynamics. Angiosperm formins form two evolutionarily distinct families, Class I and Class II, with class-specific domain layouts. The model plant Arabidopsis thaliana has 21 formin-encoding loci, including 10 Class II members. In this study, we analyze the subcellular localization of two A. thaliana Class II formins exhibiting typical domain organization, the so far uncharacterized formin AtFH13 (At5g58160) and its distant homolog AtFH14 (At1g31810), previously reported to bind microtubules. Fluorescent protein-tagged full length formins and their individual domains were transiently expressed in Nicotiana benthamiana leaves under the control of a constitutive promoter and their subcellular localization (including co-localization with cytoskeletal structures and the endoplasmic reticulum) was examined using confocal microscopy. While the two formins exhibit distinct and only partially overlapping localization patterns, they both associate with microtubules via the conserved formin homology 2 (FH2) domain and with the periphery of the endoplasmic reticulum, at least in part via the N-terminal PTEN (Phosphatase and Tensin)-like domain. Surprisingly, FH2 domains of AtFH13 and AtFH14 can form heterodimers in the yeast two-hybrid assay—a first case of potentially biologically relevant formin heterodimerization mediated solely by the FH2 domain.
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Yuqing, David Pruyne, and Anthony Bretscher. "Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast." Journal of Cell Biology 161, no. 6 (June 16, 2003): 1081–92. http://dx.doi.org/10.1083/jcb.200212040.

Full text
Abstract:
Formins are actin filament nucleators regulated by Rho-GTPases. In budding yeast, the formins Bni1p and Bnr1p direct the assembly of actin cables, which guide polarized secretion and growth. From the six yeast Rho proteins (Cdc42p and Rho1–5p), we have determined that four participate in the regulation of formin activity. We show that the essential function of Rho3p and Rho4p is to activate the formins Bni1p and Bnr1p, and that activated alleles of either formin are able to bypass the requirement for these Rho proteins. Through a separate signaling pathway, Rho1p is necessary for formin activation at elevated temperatures, acting through protein kinase C (Pkc1p), the major effector for Rho1p signaling to the actin cytoskeleton. Although Pkc1p also activates a MAPK pathway, this pathway does not function in formin activation. Formin-dependent cable assembly does not require Cdc42p, but in the absence of Cdc42p function, cable assembly is not properly organized during initiation of bud growth. These results show that formin function is under the control of three distinct, essential Rho signaling pathways.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Laining, Tetyana Smertenko, Deirdre Fahy, Nuria Koteyeva, Natalia Moroz, Anna Kuchařová, Dominik Novák, et al. "Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2." Plant Physiology 186, no. 2 (February 23, 2021): 945–63. http://dx.doi.org/10.1093/plphys/kiab085.

Full text
Abstract:
Abstract The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
APA, Harvard, Vancouver, ISO, and other styles
9

Gao, Lina, and Anthony Bretscher. "Polarized Growth in Budding Yeast in the Absence of a Localized Formin." Molecular Biology of the Cell 20, no. 10 (May 15, 2009): 2540–48. http://dx.doi.org/10.1091/mbc.e09-03-0194.

Full text
Abstract:
Polarity is achieved partly through the localized assembly of the cytoskeleton. During growth in budding yeast, the bud cortex and neck localized formins Bni1p and Bnr1p nucleate and assemble actin cables that extend along the bud-mother axis, providing tracks for secretory vesicle delivery. Localized formins are believed to determine the location and polarity of cables, hence growth. However, yeast expressing the nonlocalized actin nucleating/assembly formin homology (FH) 1-FH2 domains of Bnr1p or Bni1p as the sole formin grow well. Although cables are significantly disorganized, analysis of directed transport of secretory vesicles is still biased toward the bud, reflecting a bias in correctly oriented cables, thereby permitting polarized growth. Myosin II, localized at the bud neck, contributes to polarized growth as a mutant unable to interact with F-actin further compromises growth in cells with an unlocalized formin but not with a localized formin. Our results show that multiple mechanisms contribute to cable orientation and polarized growth, with localized formins and myosin II being two major contributors.
APA, Harvard, Vancouver, ISO, and other styles
10

Eskin, Julian A., Aneliya Rankova, Adam B. Johnston, Salvatore L. Alioto, and Bruce L. Goode. "Common formin-regulating sequences in Smy1 and Bud14 are required for the control of actin cable assembly in vivo." Molecular Biology of the Cell 27, no. 5 (March 2016): 828–37. http://dx.doi.org/10.1091/mbc.e15-09-0639.

Full text
Abstract:
Formins comprise a large family of proteins with diverse roles in remodeling the actin cytoskeleton. However, the spatiotemporal mechanisms used by cells to control formin activities are only beginning to be understood. Here we dissected Smy1, which has dual roles in regulating formins and myosin. Using mutagenesis, we identified specific sequences in Smy1 critical for its in vitro inhibitory effects on the FH2 domain of the formin Bnr1. By integrating smy1 alleles targeting those sequences, we genetically uncoupled Smy1’s functions in regulating formins and myosin. Quantitative imaging analysis further demonstrated that the ability of Smy1 to directly control Bnr1 activity is crucial in vivo for proper actin cable length, shape, and velocity and, in turn, efficient secretory vesicle transport. A Smy1-like sequence motif was also identified in a different Bnr1 regulator, Bud14, and found to be essential for Bud14 functions in regulating actin cable architecture and function in vivo. Together these observations reveal unanticipated mechanistic ties between two distinct formin regulators. Further, they emphasize the importance of tightly controlling formin activities in vivo to generate specialized geometries and dynamics of actin structures tailored to their physiological roles.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Formines"

1

Abou, Serhal Daou Pascale. "The role of the diaphanous-related formins DRF1, DRF2 and DRF3 in ErbB2-dependent cell motility and microtubule dynamics." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM5037.

Full text
Abstract:
Les formines de la famille des DRF sont des puissants nucleateurs d'actine. Précédemment, nous avons montré que DRF1 participe à la capture des microtubules (MTs) au niveau du cortex cellulaire, en aval du récepteur ErbB2. Ceci impliquait le recrutement d'APC et ACF7. Dans cette étude, nous avons examiné la contribution de DRF1, DRF2 et DRF3 à la capture des MT corticaux et à la migration cellulaire ErbB2- dépendante. La déplétion individuelle de DRF1/2 ou 3 à l'aide de siRNA perturbe fortement la migration chimiotactique ErbB2-dépendante. Les DRF sont toutes trois requises pour la capture des MT au niveau du cortex cellulaire. Des mutants de DRF1 déficients pour leur association avec l'actine sont toujours actifs pour la capture des MT. Nous avons aussi pu montrer qu'une construction limitée au domaine FH2 des DRF était parfaitement fonctionnelle. Nous avons alors procéder à une recherche systématique des protéines se liant au domaine FH2, par purification d'affinité et spectrométrie de masse. Nous avons observé que les domaines FH2 de DRF1, DRF2 et DRF3 se lient à des groupes de partenaires distincts. Ainsi, seul le domaine FH2 de DRF1 lie la protéine Rab6-Interacting Protein 2 (RB6IP2). De plus, DRF1 contrôle le recrutement de RB6IP2 au cortex cellulaire et la déplétion concomitante de RB6IP2 et d'IQGAP1 perturbe fortement la capture des MT. Ces résultats démontrent l'implication de l'interaction entre DRF1 et RB6IP2 dans la capture des MT dans les cellules en migration
Diaphanous-related formins (DRF) nucleate single linear filaments, binding to and protecting from capping their growing barbed ends. We have previously found that DRF1 participated to the tethering of microtubules (MTs) to the cell cortex, downstream of the ErbB2 receptor tyrosine kinase. This involved the recruitment of APC and ACF7. We have now further investigated the contribution of DRF1, and of the closely related DRF2 and DRF3, to the capture of cortical MTs and ErbB2-dependent breast carcinoma cell migration.Using siRNA to knock down individual DRFs, we found that depletion of DRF1/2 or3 strongly disturbed ErbB2-dependent chemotaxis. All three DRFs were required for the formation of cortical MTs, in a non-redundant manner. DRF1 mutant proteins defective for actin binding were still active for MT capture. We also found that, upon truncation of the Formin Homology (FH) 1 domain, the FH2 domain remained fully functional. In a systematic search for proteins binding to the FH2 domains via affinity purification and mass spectrometry analysis, we observed that the FH2 domains of DRF1, DRF2 and DRF3 engaged with distinct sets of proteins. For instance, only FH2 domain of DRF1 pulled down Rab6-Interacting Protein 2 (RB6IP2). Interestingly, DRF1 controlled the cortical localization of RB6IP2 and concomitant depletion of RB6IP2 and IQGAP1 strongly disturbed capture of cortical MTs, showing the involvement of the DRF1/IQGAP1/RB6IP2 interaction in MT tethering at the cell leading edge
APA, Harvard, Vancouver, ISO, and other styles
2

Prigent-Cossard, Magali. "Caractérisation fonctionnelle des protéines ypt/rabgap, Gyp5p et Gyl1p et de leur interaction avec une protéine à domaine N-BAR, Rvs167p chez Saccharomyces cerevisiae." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112154.

Full text
Abstract:
Chez la levure Saccharomyces cerevisiae, la croissance est orientée et nécessite l’apport de membranes et d’enzymes pour la synthèse de la paroi cellulaire. La régulation du transport des vésicules permettant cet apport est assuré par les GTPases de la famille Ypt/Rab. Sec4p, une Ypt/Rab GTPase, est impliquée dans l’exocytose en assurant la spécificité de l’ancrage des vésicules post-golgiennes envoyées aux sites de croissance. La régulation de son activité GTPase est essentielle pour sa fonction.Nous nous intéressons aux protéines Gyp5p et Gyl1p, deux membres de la famille des protéines activatrices des GTPases Ypt/Rab chez S. cerevisiae. Le laboratoire a montré l’implication du complexe Gyp5p-Gyl1p dans l’exocytose polarisée vraisemblablement par la régulation de Sec4p. Notre étude a montré une interaction directe in vitro de ces deux protéines, ainsi qu’une interdépendance pour une bonne localisation du complexe aux sites de croissance polarisée, c'est-à-dire au sommet du bourgeon durant la croissance apicale et au cou du bourgeon durant la cytocinèse. Cette localisation dépend de deux formines, d’éléments du polarisome et des câbles d’actine. De plus, nous avons montré par des expériences d’immunofluorescence et de microscopie électronique en collaboration avec J.-M. Verbavatz (iBiTec-S, CEA), que ces protéines sont transportées sur des vésicules de sécrétion jusqu’aux sites de croissance polarisée.Notre étude de l’interaction du complexe Gyp5p-Gyl1p avec Rvs167p, une protéine à domaine BAR (Bin1-Amphiphysin-Rvs167p) a montré que Gyp5p et Gyl1p sont nécessaires pour la bonne localisation de Rvs167p au sommet du petit bourgeon et que ces complexes se forment principalement dans des fractions enrichies en membrane plasmique. Pour mieux caractériser ces interactions, nous avons réalisé une mutation de la proline 473 dans le domaine SH3 de Rvs167p et des délétions des séquences riches en proline de Gyp5p et Gyl1p. Ces mutations entraînent un défaut d’interaction de Rvs167p avec Gyp5p et Gyl1p et la perte de la localisation de Rvs167p au sommet du petit bourgeon. Afin de comprendre la fonction de ces interactions, nous avons réalisé des expériences de microscopie électronique et des tests de sécrétion de l’endo-β-1,3-glucanase, Bgl2p dans une souche Δrvs167. Nous avons mis en évidence une accumulation de vésicules de sécrétion au niveau du petit bourgeon et un défaut de sécrétion de Bgl2p à 13°C dans cette souche. De plus, nous avons également observé une accumulation de vésicules de sécrétion dans une souche exprimant Rvs167p mutée pour la proline 473 et un défaut de sécrétion de Bgl2p dans une souche exprimant Gyp5p et Gyl1p dépourvues de leurs séquences riches en proline. Ces résultats montrent que Rvs167p joue un rôle dans l’exocytose polarisée au stade du petit bourgeon et que cette fonction dépend de son recrutement par Gyp5p et Gyl1p au sommet du petit bourgeon
In Saccharomyces cerevisiae, growth is oriented and requires the contribution of membranes and enzymes for the synthesis of the cell wall. Regulation of vesicles transport allowing this contribution is provided by the Ypt/Rab GTPases family. Sec4p, a Ypt/Rab GTPase, is involved in exocytosis by controlling the tethering of post-Golgi vesicles at sites of growth. Regulation of Sec4p GTPase activity by is essential for its function.We studied the proteins Gyp5p and Gyl1p, two members of the Ypt/Rab GTPases activiting proteins (RabGAP) family in S. cerevisiae. Gyp5p and Gyl1p interact with Sec4p and are involved in the control of exocytosis at the small-bud stage. Our study showed that Gyp5p and Gyl1p interact directly in vitro and are interdependent for their correct localization to the sites of polarized growth, e.g. the bud tip during apical growth and the bud neck during cytokinesis. We showed that the localization of Gyp5p and Gyl1p to the sites of polarized growth depends on the formins Bni1 and Bnr1, but also on polarisome components and actin cables. Moreover, we showed by immunofluorescence and electron microscopy (in collaboration with J.-M. Verbavatz), that Gyp5p and Gyl1p are transported onto secretory vesicles to access the sites of polarized growth.We studied the interaction of Gyp5p and Gyl1p with Rvs167p, a BAR domain (Bin1-Amphiphysin-Rvs167p) protein and showed that Gyp5p and Gyl1p are necessary for the recruitment of Rvs167p to the small-bud tip. Both the mutation of the proline 473 in the SH3 domain of Rvs167p and the deletion of the proline-rich regions of Gyp5p and Gyl1p disrupt the interaction of Rvs167p with Gyp5p and Gyl1p and impair the localization of Rvs167p to the tips of small buds. Electron microscopy experiments unraveled an accumulation of secretory vesicles in small buds of rvs167Δcells and β-1,3-endoglucanase Bgl2p secretion assays showed Bgl2p secretion defects in cultures enriched in small buds at 13°C. In addition, an accumulation of secretory vesicles was observed in Rvs167pP473L strain, and Bgl2p secretion defect were found in strains expressing Gyp5p and Gyl1p deleted of their proline-rich sequences. These results show that Rvs167p plays a role in polarized exocytosis at the small bud stage and that its function in exocytosis depends on its recruitment to the tip of small buds by the RabGAP proteins Gyp5p and Gyl1p
APA, Harvard, Vancouver, ISO, and other styles
3

Klee, Saskia Kirsten. "The molecular function and regulation of formins in the yeast Saccharomyces cerevisiae Die molekulare Funktion und Regulation von Forminen in der Hefe Saccharomyces cerevisiae /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964584816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramalingam, Nagendran. "Diaphanous-related formins." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-106803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kulacz, Wojciech. "Regulation of Inverted Formin-1 (INF1) by Microtubule-Affinity Regulating Kinase 2 (MARK2)." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22801.

Full text
Abstract:
The actin and microtubule cytoskeleton plays a critical role in the establishment of cell polarity. Cell processes like mitosis and migration rely on the reorganization of the cytoskeleton to properly function. One driver of cell polarity is the formin, Inverted Formin-1 (INF1). INF1 is able to induce F-actin formation, activate the Serum Response Factor (SRF) pathway, stabilize microtubules, associate with microtubules, and disperse the Golgi body. Regulation of INF1 is unique, since it does not possess conserved formin regulatory domains. However, INF1 does possess many potential phosphorylation sites. In this study, we demonstrate that INF1’s ability to induce F-actin stress fibers and activate SRF is inhibited by Microtubule-Affinity Regulating Kinase 2 (MARK2). Inhibition of INF1’s actin polymerization activity by MARK2 likely occurs near INF1’s C-terminus. However, MARK2 was unable to inhibit INF1’s ability to stabilize microtubules, associate with microtubules, and disperse the Golgi. Furthermore, we show that INF1 overexpression is associated with primary cilium absence and in some cases, the presence of long cilia, suggesting that INF1 plays a role in primary cilium formation.
APA, Harvard, Vancouver, ISO, and other styles
6

Cristea, Laura G. "The Expression, Identification and Biochemical Characterization of the Extracellular Domain of Arabidopsis AFH2." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1417707960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kerleau, Mikaël. "Régulation biochimique et mécanique de l'assemblage de filaments d'actine par la formine." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS583/document.

Full text
Abstract:
Pour la cellule, l’assemblage du cytosquelette d’actine joue un rôle central dans son déplacement, sa division ou sa morphogenèse. Cette réorganisation est orchestrée par des protéines régulatrices et des contraintes mécaniques. Savoir comment les combinaisons de ces actions biochimiques et physiques régulent les différentes architectures d’actine reste un véritable défi.La formine protéine est un régulateur essentiel de l’actine. Ancrée à la membrane, elle assemble les filaments d’actine (nucléation et élongation) présents dans des architectures linéaires et non branchées. La formine est impliquée notamment dans la génération de filopodes, protrusions guidant la locomotion cellulaire.Une propriété remarquable est sa capacité à suivre processivement le bout barbé d’un filament qu’elle allonge, tout en stimulant son élongation en présence de profiline. La régulation de cette processivité de la formine est encore à clarifier. C’est une caractéristique importante, intervenant dans le contrôle de la longueur des filaments, dont les connaissances sont à approfondir.L’étude de cette processivité est facilitée par l’utilisation d’un outil microfluidique novateur pour l’étude de la dynamique de multiples filaments individuels d’actine in vitro. Au sein d’une chambre en PDMS, les filaments sont ancrés à la surface par un seul bout, le reste s’alignant avec le flux. Nous pouvons précisément y changer l’environnement biochimique,tandis que la friction visqueuse sur les filaments permet d’exercer une tension contrôlée sur chacun d’entre eux.Simultanément à l’action de la formine au bout barbé, j’étudie l’effet d’autres protéines ou de la vitesse d’élongation sur sa processivité, en mesurant son taux de détachement. Par ailleurs nous pouvons reproduire l’ancrage membranaire cellulaire en attachant spécifiquement nos formines à la surface. Dans la chambre, par l’intermédiaire du filament qu’elle allonge, nous pouvons alors exercer des forces et en étudier l’effet sur la formine.Premièrement, j’ai étudié l’impact de la protéine de coiffe (CP) sur l’activité de la formine au bout barbé. La liaison de ces deux protéines aubout barbé a jusqu’ici été considérée mutuellement exclusive. Nous avons observé qu’elles peuvent toutefois se retrouver simultanément liées au bout barbé, au sein d’un complexe à courte durée de vie. Ce complexe ternaire est capable de stopper l’activité du bout barbé même si l’affinité d’une protéine est réduite par la présence de l’autre. Nous proposons qu’une compétition entre la protéine de coiffe et la formine régule la dynamique du bout barbé dans des architectures où les longueurs doivent être hautement contrôlées.J’ai ensuite étudié l’influence de divers facteurs sur la processivité. La processivité est très sensible à la présence du sel et à la fraction demarquage fluorescent utilisée dans nos expériences. Nous avons également observé l’effet de la vitesse d’élongation, qui peut être modifiée en changeant la concentration en actine ou en profiline. D’une part, l’actine réduit la processivité, à n’importe quelle concentration de profiline. D’autre part, la concentration en profiline augmente cette processivité,indépendamment du taux d’élongation. Cela suggère qu’une incorporation de monomère diminue la processivité, tandis que la profiline, par sa présence au bout barbé, l’augmente.Enfin, la tension exercée sur les formines abaisse fortement la processivité : quelques piconewtons réduisent la processivité de plusieurs ordres de grandeurs. Cet effet, purement mécanique, prédomine sur les facteurs biochimiques. Ces résultats nous indiquent que les contraintes mécaniques de tension joueraient un rôle prédominant dans le contexte cellulaire. Cette étude nous aide à construire un modèle plus complet de l’élongation processive par les formines.En conclusion, ce projet permet de mieux comprendre le fonctionnement moléculaire de la formine, en particulier le mécanisme de l’élongation processive et de sa régulation
Actin filament assembly plays a pivotal role in cellular processes such as cell motility, morphogenis or division. Elucidating how the actin cytoskeleton is globally controlled remains a complex challenge. We know that it is orchestrated both by actin regulatory proteins and mechanical constraints.The formin protein is an essential actin regulator. Anchored to the cell membrane, it is responsible for the assembly (nucleation and elongation) of actin filaments found in linear and unbranched architectures. It is notably involved in the generation of filopodia protrusions at the leading edge of a motile cell. One important feature is that it processively tracks the barbed end of an actin filament, while stimulating its polymerization in the presence of profilin.Formin processivity and its regulation is not yet completely understood. As an important factor determining the length of the resulting filament, it must be investigated further.A perfect assay to look at formin processivity in vitro is an innovative microfuidics assay coupled to TIRF microscopy, pioneered by the team, to simultaneously track tens of individual filaments. In a designed chamber,filaments are anchored to the surface by one end, and aligned with the solution flow. We can precisely control the biochemical environment of the filaments. Moreover, we can exert and modulate forces on filaments, due to the viscous drag of flowing solutions. By varying chemical conditions during formin action at the barbed end, I investigated how others proteins or the elongation rate can modulate formin processivity, by looking at the detachment rate of formins.Moreover, we can mimic the membrane anchoring in the cell by specifically attaching formins at the surface. In our chamber, through the filament they elongate, we can apply force to formins.In complement to biochemical studies, we then investigate the effect oftension on their processivity.I first investigated the impact of a capping protein on formin action at the barbed end. Their barbed end binding is thought to be mutually exclusive.We measured that the affinity of one protein is reduced by the presence of the other. However we observed they both can bind simultaneously the barbed end, in a transient complex, which block barbed end elongation.Competition of formin and CP would regulate barbed end dynamics in a cell situation where length is tightly controlled.I next studied formin processivity dependence on various parameters. We show that processivity is sensitive to salt and labelling fraction used in our solutions. We also looked at how processivity is affected by the elongation rate, which can either be varied by actin or profilin concentration. On one hand, actin concentration reduces processivity, at any given concentrationsof profilin. On the other hand, raising the concentration of profilin increasesprocessivity, regardless of the elongation rate. This indicates that theincorporation of actin monomers decreases processivity while in contrast,the presence of the profilin at the barbed end increases it.Moreover, tension exerted on formin was observed to largely favor its detachment. In a quantitative matter, the effect of tension prevails over anyothers biochemical factor on processivity : only a few piconewtons decreaseit by several orders of magnitude. This important effect helps us build amore complete model of processive elongation. These results indicate thatmechanical stress is likely to play an important role in a cellular context.In conclusion, this project brings insights into the molecular properties offormin and helps to decipher the mechanism of processive elongation and its regulation
APA, Harvard, Vancouver, ISO, and other styles
8

Shouler, Daniel Reginald. "Expanded forming limit testing for sheet forming processes." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gontijo, Alexandre Bahia. "Estudo e modelagem das dinâmicas estruturais de assembléias de formigas tropicais em diferentes escalas ecológicas." Programa de Pós-Graduação em Ecologia de Biomas Tropicais. Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 2009. http://www.repositorio.ufop.br/handle/123456789/3029.

Full text
Abstract:
Submitted by Maurílio Figueiredo (maurilioafigueiredo@yahoo.com.br) on 2013-05-17T20:22:51Z No. of bitstreams: 1 DISSERTAÇÃO_EstudoModelagemDinâmica.pdf: 10942305 bytes, checksum: dc9f065d1e75f92a9f80ee796d2fbb08 (MD5)
Rejected by Neide Nativa (neide@sisbin.ufop.br), reason: Favor repassar para Graci on 2013-06-12T19:25:23Z (GMT)
Submitted by Maurílio Figueiredo (maurilioafigueiredo@yahoo.com.br) on 2013-06-13T20:03:14Z No. of bitstreams: 1 DISSERTAÇÃO_EstudoModelagemDinâmica.pdf: 10942305 bytes, checksum: dc9f065d1e75f92a9f80ee796d2fbb08 (MD5)
Rejected by Neide Nativa (neide@sisbin.ufop.br), reason: on 2013-06-21T18:25:44Z (GMT)
Submitted by Maurílio Figueiredo (maurilioafigueiredo@yahoo.com.br) on 2013-06-21T19:49:47Z No. of bitstreams: 1 DISSERTAÇÃO_EstudoModelagemDinâmica.pdf: 10942305 bytes, checksum: dc9f065d1e75f92a9f80ee796d2fbb08 (MD5)
Approved for entry into archive by Gracilene Carvalho (gracilene@sisbin.ufop.br) on 2013-07-02T12:38:00Z (GMT) No. of bitstreams: 1 DISSERTAÇÃO_EstudoModelagemDinâmica.pdf: 10942305 bytes, checksum: dc9f065d1e75f92a9f80ee796d2fbb08 (MD5)
Made available in DSpace on 2013-07-02T12:38:00Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO_EstudoModelagemDinâmica.pdf: 10942305 bytes, checksum: dc9f065d1e75f92a9f80ee796d2fbb08 (MD5) Previous issue date: 2009
A teoria ecológica é construída através de modelos que possam explicar as relações entre organismos e ambiente. No entanto, esta se trata de uma ciência integradora de conhecimentos e beneficiada por abordagens interdisciplinares devido à enorme complexidade observada nos ecossistemas. Nesse contexto, o uso de ferramentas matemáticas tem se mostrado extremamente importante para a compreensão dos sistemas ecológicos. Neste trabalho foram estudadas assembléias de formigas em duas áreas da região neotropical, Caxiuanã (Pará) e Volcan Barva (Costa Rica). A partir da analise de suas dinâmicas populacionais e estruturas de dominância sob diferentes escalas espaciais e ecológicas (composição de gêneros e guildas tróficas), foram desenvolvidos modelos computacionais que permitissem avaliar alguns dos principais modelos de suporte à Ecologia Teórica. Esses modelos buscam explicar tanto as dinâmicas e estruturas populacionais como também os mecanismos e processos por trás da funcionalidade de ecossistemas ditos complexos. Foram observadas diferenças marcantes na estrutura de dominância das populações entre as duas escalas ecológicas consideradas.onde diferentes níveis de informação foram obtidos com cada uma das abordagens. As análises sob a escala de gêneros mostraram grande instabilidade temporal associada a diferenças de configuração hierárquica entre escalas espaciais distintas. Em contrapartida, as análises feitas sob a escala de guildas tróficas evidenciaram comportamentos relativamente mais estáveis quando comparados aos gêneros. Tais resultados foram interpretados a luz de duas teorias principais, o “nicho construtivismo” e “sistemas complexos adaptativos". Por fim, ambas teorias foram atreladas, onde a emersão das funcionalidades do ecossistema com sistemas complexos adaptativos se mostrou possível a partir dos mecanismos de nicho construção. __________________________________________________________________________________________
ABSTRACT: The ecological theory is built on models that can explain the relationships between organisms and their environment. However, if this is a science that integrates knowledge and benefited from interdisciplinary approaches due to the enormous complexity observed in ecosystems. In this context, the use of mathematical tools has been extremely important for the understanding of ecological systems. In this study ant assemblages in two areas of the Neotropics, Caxiuanã (Pará) and Volcan Barva (Costa Rica). From the analysis of their population dynamics and structures of dominance under different spatial scales and ecological (gender composition and feeding guilds) were developed computer models that help to assess some of the main support models to Theoretical Ecology. These models seek to explain both the dynamics and population structure but also the mechanisms and processes behind the functionality of so-called complex ecosystems. Considerable differences were observed in the structure of dominance of populations between the two ecological scales with different levels of information were obtained with each approach. The analysis under the range of genres showed great temporal instability associated with differences in configuration hierarchy between different spatial scales. In contrast, the analysis done under the range of feeding guilds showed relatively more stable behavior compared to those genres. These results were interpreted in light of two main theories, the "niche constructivism" and "complex adaptive systems." Finally, both theories have been linked, where the emergence of the features of the ecosystem with complex adaptive systems proved possible from the mechanisms niche construction.
APA, Harvard, Vancouver, ISO, and other styles
10

Grasty, Lawrence Victor. "Shot peen forming." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Formines"

1

Blas, Josep Garcia i. Formigues. Barcelona: Viena, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Soetan, Ladipo. Monologues and other formings. Ikoyi, Lagos: Dredrew, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

M, Caddell Robert, ed. Metal forming. 3rd ed. New York, NY: Cambridge University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thermo forming. Munich: Hanser Publishers, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Forming hypotheses. New York: Rosen Pub. Group's PowerKids Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Filonov, I. P. Mekhanika prot͡s︡essov obkatki. Minsk: "Nauka i tekhnika", 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cruanyes, Francesc. Les primeres formigues. Figueres: Brau Edicions, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kiln forming glass. Ramsbury: Crowood, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deer, W. A. Rock-forming minerals. 2nd ed. Bath, UK: Geological Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sheet metal forming. Bristol: Hilger, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Formines"

1

Olowinsky, Alexander. "Forming." In Tailored Light 2, 241–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01237-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gooch, Jan W. "Forming." In Encyclopedic Dictionary of Polymers, 322. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_5240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Kaushik, Hridayjit Kalita, Divya Zindani, and J. Paulo Davim. "Forming." In Materials Forming, Machining and Tribology, 53–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21066-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Appel, F., H. Kestler, and H. Clemens. "Forming." In Intermetallic Compounds - Principles and Practice, 617–42. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470845856.ch29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rahaman, M. N. "Forming." In Inorganic Reactions and Methods, 18–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rosato, Donald V., and Dominick V. Rosato. "Forming." In Plastics Processing Data Handbook, 208–31. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-010-9658-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beiss, P. "Spray forming and continuous forming." In Powder Metallurgy Data, 83–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10689123_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wightwick, Jane, and Mahmoud Gaafar. "Forming questions." In Mastering Arabic Grammar, 48–53. London: Macmillan Education UK, 2005. http://dx.doi.org/10.1007/978-1-137-14586-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Howie, J. G. R. "Forming ideas." In Research in General Practice, 24–30. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-2981-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mang, Theo. "Forming Lubricants." In Lubricants and Lubrication, 639–780. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527645565.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Formines"

1

Avrahami, Daniel, and Scott E. Hudson. "Forming interactivity." In the conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/778712.778735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Girard, Patrick, Zohir Benrabah, and Hicham Mir. "Controlling the Forming of Thermoplastics through Forming Power." In SAE 2013 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-0602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dang, T., L. M. Tebaay, S. Gies, and A. E. Tekkaya. "Multiple forming tools in incremental forming – Influence of the forming strategies on sheet contour." In ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming. Author(s), 2016. http://dx.doi.org/10.1063/1.4963462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Magee, J., K. G. Watkins, and T. Hennige. "Symmetrical laser forming." In ICALEO® ‘97: Proceedings of the Laser Applications in the Medical Devices Industry Conference. Laser Institute of America, 1999. http://dx.doi.org/10.2351/1.5059287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matson, Rebecca. "Re-forming information." In the 19th annual international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/501516.501540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schuocker, Dieter. "Laser-assisted forming." In High-Power Laser Ablation III. SPIE, 2000. http://dx.doi.org/10.1117/12.407342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alotaibi, T., B. M. Novac, P. Senior, I. R. Smith, V. Nekouie, A. Roy, and V. Silberschmidt. "Magneto-forming studies." In 2017 IEEE 21st International Conference on Pulsed Power (PPC). IEEE, 2017. http://dx.doi.org/10.1109/ppc.2017.8291316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vanier, Luc, Hank Kaczmarski, and Lance Chong. "Forming the dots." In the SIGGRAPH 2003 conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/965400.965530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

CÔTÉ, ROBIN. "FORMING ULTRACOLD MOLECULES." In Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2009. http://dx.doi.org/10.1142/9781848164703_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Ji, and Gary J. Cheng. "Forming limit and fracture mode of microscale laser dynamic forming." In PICALO 2010: 4th Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5057251.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Formines"

1

Blue, C. A., V. K. Sikka, Jung-Hoon Chun, and T. Ando. Uniform-droplet spray forming. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Switzner, Nathan, and Dick Henry. Spin-forming Project Report. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/952564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chow, T. S., T. A. Biesiada, A. Sunwoo, J. Long, T. Anklam, and S. W. Kang. Uranium alloy forming process research. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/507837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rhee, M., R. Becker, R. Couch, and M. Li. Modeling Production Plant Forming Processes. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/918410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacCallum, Danny O'Neill, Chung-Nin Channy Wong, Gerald Albert Knorovsky, Michele D. Steyskal, Tom Lehecka, William Mark Scherzinger, and Jeremy Andrew Palmer. Laser based micro forming and assembly. US: Sandia National Laboratories, November 2006. http://dx.doi.org/10.2172/899077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kohler, Leslie K., Louis F. Aprigliano, and A. S. Rao. Spray Forming Iron Based Amorphous Metals. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada418501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McHugh, K. Spray forming lead strip. Final report. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/656791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Yashen, Joseph Eto, Brian Johnson, Jack Flicker, Robert Lasseter, Hugo Villegas Pico, Gab-Su Seo, Brian Pierre, and Abraham Ellis. Research Roadmap on Grid-Forming Inverters. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1721727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cullinan, Timothy Edward. Crystallization dynamics in glass-forming systems. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1342537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nieh, T. G., and J. Wadsworth. Superplasticity and superplastic forming of ceramics. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10172263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography