Academic literature on the topic 'Forming technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forming technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forming technology"
Yamada, Takehiro. "Forming Technology." Seikei-Kakou 20, no. 7 (July 20, 2008): 423–26. http://dx.doi.org/10.4325/seikeikakou.20.423.
Full textMANABE, Ken-ichi, and Sadakatsu FUCHIZAWA. "Tube Forming Technology." Journal of the Japan Society for Technology of Plasticity 52, no. 600 (2011): 36–41. http://dx.doi.org/10.9773/sosei.52.36.
Full textUtsumi, Kazuaki, and Nobuo Ohde. "Designed-space forming technology." Journal of the Japan Society of Powder and Powder Metallurgy 35, no. 3 (1988): 208–10. http://dx.doi.org/10.2497/jjspm.35.208.
Full textRadek, Norbert, Jozef Meško, and Andrej Zrak. "Technology of Laser Forming." Manufacturing Technology 14, no. 3 (October 1, 2014): 428–31. http://dx.doi.org/10.21062/ujep/x.2014/a/1213-2489/mt/14/3/428.
Full textWang, Li Xia, Qiu He Yang, and Shu Qian He. "Sheet Metal Multipoint Forming Technology Based on Hydro-Forming." Advanced Materials Research 179-180 (January 2011): 1278–81. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.1278.
Full textARAKAWA, Masafumi. "Powder characteristics on forming technology." Journal of the Society of Materials Science, Japan 39, no. 446 (1990): 1481–89. http://dx.doi.org/10.2472/jsms.39.1481.
Full textKIISKINEN, HARRI, KRISTIAN SALMINEN, TIMO LAPPALAINEN, JAAKKO ASIKAINEN, JANNE KERANEN, and ERKKI HELLEN. "Progress in foam forming technology." August 2019 18, no. 8 (September 1, 2019): 499–510. http://dx.doi.org/10.32964/tj18.8.499.
Full textYang, Jin Long, Chun Lei Dai, and Yong Huang. "Controllable Forming Technology in Gelcasting." Materials Science Forum 475-479 (January 2005): 1325–28. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1325.
Full textSeshan, K. "Re-forming the reforming technology." Applied Catalysis A: General 105, no. 2 (November 1993): N23—N24. http://dx.doi.org/10.1016/0926-860x(93)80264-q.
Full textValkama, Timo, and Takashi Akazawa. "Latest Development in Forming Technology." JAPAN TAPPI JOURNAL 61, no. 4 (2007): 430–34. http://dx.doi.org/10.2524/jtappij.61.430.
Full textDissertations / Theses on the topic "Forming technology"
Chadha, Surjit S. "Forming and maintenance studies of powder DCEL devices." Thesis, University of Greenwich, 1993. http://gala.gre.ac.uk/6127/.
Full textGage, Simon M. "Amorphous silicon memory devices : the forming process and filamentary conduction." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/13866.
Full textCassinath, Zen. "Development of twin screw Rheo extrusion technology." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7608.
Full textMcCraith, Andrew D. (Andrew Douglas) 1976. "Material temperature effects on final product size for new profile ring mill forming technology." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80512.
Full textBillur, Eren. "Fundamentals and Applications of Hot Stamping Technology for Producing Crash-Relevant Automotive Parts." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366243664.
Full textReddy, Mahender Palvai. "Finite element simulation of three-dimensional casting, extrusion and forming processes." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07282008-135311/.
Full textArwidson, Claes. "Numerical simulation of sheet metal forming for high strength steels." Licentiate thesis, Luleå, 2005. http://epubl.luth.se/1402-1757/2005/08.
Full textDavids, Wafeeq. "Advanced Ti – based AB and AB2 hydride forming materials." University of the Western Cape, 2011. http://hdl.handle.net/11394/5418.
Full textTi – based AB and AB₂ hydride forming materials have shown to be very promising hydrogen storage alloys due to their reasonable reversible hydrogen storage capacity at near ambient conditions, abundance and low cost. However, these materials are not used extensively due to their poor activation performances and poisoning tolerance, resulting insignificant impeding of hydrogen sorption. The overall goal of this project was to develop the knowledge base for solid-state hydrogen storage technology suitable for stationary and special vehicular applications focussing mainly on Ti – based metal hydrides. In order to accomplish this goal, the project had a dual focus which included the synthesis methodology of Ti – based AB and AB₂ materials and the development of new surface engineering solutions, based on electroless plating and chemical vapour deposition on the surface modification of Ti – based metal hydride forming materials using Pd-based catalytic layers. TiFe alloy was synthesised by sintering of the Ti and Fe powders and by arc-melting. Sintered samples revealed three phases: TiFe (major), Ti₄Fe₂O, and β-Ti. Hydrogen absorption showed that the sintered material was almost fully activated after the first vacuum heating (400 °C) when compared to the arc-melted sample requiring several activation cycles. The increase in the hydrogen absorption kinetics of the sintered sample was associated with the influence of the formed hydrogen transfer catalyst, viz. oxygen containing Ti₄Fe₂O₁₋ₓ and β-Ti, which was confirmed by the XRD data from the samples before and after hydrogenation. The introduction of oxygen impurity into TiFe alloy observed in the sintered sample significantly influenced on its PCT performances, due to formation of stable hydrides of the impurity phases, as well as destabilisation of both β-TiFeH and, especially, γ-TiFeH₂. This finally resulted in the decrease of the reversible hydrogen storage capacity of the oxygen-contaminated sample. TiFe alloy was also prepared via induction melting using graphite and alumo-silica crucibles. It was shown that the samples prepared via the graphite crucible produced TiFe alloy as the major phase, whereas the alumo-silica crucible produced Ti₄Fe₂O₁-x and TiFe₂ as the major phases, and TiFe alloy as the minor one. A new method for the production of TiFe – based materials by two-stage reduction of ilmenite (FeTiO₃) using H₂ and CaH₂ as reducing agents was developed. The reversible hydrogen absorption performance of the TiFe – based material prepared via reduction of ilmenite was 0.5 wt. % H, although hydrogen absorption capacity of TiFe reported in the literature should be about 1.8 wt. %. The main reason for this low hydrogen capacity is due to large amount of oxygen present in the as prepared TiFe alloy. Thus to improve the hydrogen absorption of the raw TiFe alloy, it was melted with Zr, Cr, Mn, Ni and Cu to yield an AB₂ alloy. For the as prepared AB₂ alloy, the reversible hydrogen sorption capacity was about 1.3 wt. % H at P=40 bar and >1.8 wt.% at P=150 bar, which is acceptable for stationary applications. Finally, the material was found to be superior as compared to known AB₂-type alloys, as regards to its poisoning tolerance: 10-minutes long exposure of the dehydrogenated material to air results in a slight decrease of the hydrogen absorption capacity, but almost does not reduce the rate of the hydrogenation. Hydrogen storage performance of the TiFe-based materials suffers from difficulties with hydrogenation and sensitivity towards impurities in hydrogen gas, reducing hydrogen uptake rates and decreasing the cycle stability. An efficient solution to this problem is in modification of the material surface by the deposition of metals (including Palladium) capable of catalysing the dissociative chemisorption of hydrogen molecules. In this work, the surface modification of TiFe alloy was performed using autocatalytic deposition using PdCl₂ as the Pd precursor and metal-organic chemical vapour deposition technique (MO CVD), by thermal decomposition of palladium (II) acetylacetonate (Pd[acac]₂) mixed with the powder of the parent alloy. After surface modification of TiFe – based metal hydride materials with Pd, the alloy activation performance improved resulting in the alloy absorbing hydrogen without any activation process. The material also showed to absorb hydrogen after exposure to air, which otherwise proved detrimental.
Stavroulakis, Georgios. "Rapidly deployable, self forming, wireless networks for maritime interdiction operations." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FStavroulakis.pdf.
Full textThesis Advisor(s): Alex Bordetsky. "September 2006." Includes bibliographical references (p. 79-81). Also available in print.
Nilsson, Vestola Emilia. "3D roll forming in the production of side members : The possibilities of implementing 3D roll forming in the side member production at Scania Ferruform." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69964.
Full textDet här examensarbetet är den sista delen för en civilingenjörsexamen inom Teknisk design med inriktning mot Produktionsdesign vid Luleå tekniska universitet. Projektet utfördes på Scania Ferruform i Luleå under januari till juni 2018. Ferruform producerar sidobalkar till Scanias lastbilar i en traditionell rullformningsmaskin. Rullformningstekniken har dock utvecklats och idag finns det en ny version av tekniken som kallas 3D-rullformning och som möjliggör formning av balkar med variabla tvärsnitt. Genom att forma sidobalkar med variabla livbredder skulle det vara möjligt att producera balkar med optimerad form, vilket innebär en viktminskning av lastbilarna och en ökning i kundernas nyttolast. Syftet med projektet var att identifiera fördelar och nackdelar med att investera i 3D-rullformning i Ferruforms sidobalkstillverkning och undersöka hur tekniken borde implementeras. Studien hade två olika mål. Det första målet var att presentera ett förslag för implementeringen av 3D-rullformning i sidobalktillverkningen på Ferruform. Det andra var att ta fram en projektplan för Ferruforms eventuella fortsatta arbete med att implementera 3D-rullformning. En litteraturstudie utfördes för att ta fram en teoretisk referensram bestående av relevanta teorier inom teknisk design, rullformning, organisationsförändringar och hållbarhet. En beskrivning och analys av nuläget genomfördes och inkluderade sidobalkstillverkningen, sidobalksmåleriet och chassimonteringen på Scania Södertälje. Nuläget undersöktes främst genom intervjuer och observationer. Processflödesanalys användes för att visualisera och analysera nuläget. Nästa steg i projektet var att beskriva och analysera det framtida läget, detta gjordes genom att ta tillvara på den tillgängliga kunskapen hos personalen på Ferruform och genom att analysera det benchmarkingbesök som gjordes innan detta projekt påbörjades. Undersökningarna av nuläge och framtid resulterade i kravspecifikation. Fyra koncept för den framtida sidobalkstillverkningen togs fram och utvärderades med hjälp av metoden Pughs matris. Utvärderingen resulterade i att ett koncept valdes ut för att utvecklas ytterligare. Det slutliga konceptet för implementeringen består av den nuvarande, traditionella rullformningsmaskinen och uppbyggnaden av en ny produktionslina för 3D-rullformning. 3D-rullformningsmaskinen består av en maskindel, vilket kräver att sidobalkarna går igenom maskinen två gånger. Projektets resultat visade att mängden sidobalkar som skulle möjliggöra vinst genom att tillverkas med 3D-rullformning, var lägre än väntat. Resultaten visar också att det är många överväganden och vidare utredningar som krävs innan en implementering kan påbörjas. Dock har jag, precis som relevant teori föreslår, också dragit slutsatsen att 3D-rullformning är en flexibel produktionsmetod som skulle göra det möjligt för Scania att tillfredsställa individuella kundbehov och även förse företaget med en långsiktig lösning för framtida kundbehov.
Books on the topic "Forming technology"
Manufacturing technology: Foundry, forming and welding. New Delhi: Tata McGraw-Hill, 1987.
Find full textRamezani, Maziar. Rubber-pad forming processes: Technology and applications. Cambridge, UK: Woodhead Publishing, 2012.
Find full textICAFT 2003 (2003 Chemnitz, Germany). International Conference on Accuracy in Forming Technology, ICAFT 2003 : [in association with] 10th Saxon Conference on Forming Technology SFU 2003 : proceedings. Zwickau: Wissenschaftliche Scripten, 2003.
Find full text(Dorel), Banabic D., and European Scientific Association for Material Forming, eds. Advanced methods in material forming. Berlin: Springer, 2007.
Find full textKaĭbyshev, O. A. Superplasticity: Microstructural refinement and superplastic roll forming. Arlington, Va: Futurepast, 2005.
Find full textSun, Baode, Jun Wang, and Da Shu. Precision Forming Technology of Large Superalloy Castings for Aircraft Engines. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6220-8.
Full textXian dai ye ya cheng xing ji shu: Modern hydroforming technology. Beijing Shi: Guo fang gong ye chu ban she, 2009.
Find full textHu, Ping, Ning Ma, Li-zhong Liu, and Yi-guo Zhu. Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4099-3.
Full textInternational Symposium on Superplasticity and Superplastic Forming Technology (1st and 2nd 2001, 2002 Indianapolis, Ind., Columbus, Ohio). First and Second International Symposia on Superplasticity and Superplastic Forming Technology : Proceedings of symposia organized by ASM International, Materials Park, Ohio, USA, 5-8 November 2001, Indiana Convention Center, Indianapolis, Indiana, USA and 7-9 October 2002, Greater Columbus Convention Center, Columbus, Ohio, USA. Edited by Dunand David C and Sanders Dan G. Materials Park, Ohio: ASM International, 2003.
Find full textNimatulaev, Magomedhan. Information technology in professional activities. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1031122.
Full textBook chapters on the topic "Forming technology"
Roll, Karl, and Dieter Steegmüller. "Casting and metal forming." In Technology Guide, 464–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88546-7_88.
Full textLindgren, Michael, Jonas Edberg, and Lars-Erik Lindgren. "Roll Forming." In Handbook of Manufacturing Engineering and Technology, 285–307. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_43.
Full textLindgren, Michael, Jonas Edberg, and Lars-Erik Lindgren. "Roll Forming." In Handbook of Manufacturing Engineering and Technology, 1–19. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4976-7_43-1.
Full textTakahashi, Minoru, and Masayoshi Fuji. "Kneading and Plastic Forming." In Powder Technology Handbook, 429–32. Fourth edition. | Boca Raton, FL : Taylor & Francis Group, LLC, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/b22268-53.
Full textDean, Trevor, Bo-Zhou Di, and Li-Liang Wang. "Adding Value by Advancing Metal Forming Technology." In Forming the Future, 319–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_27.
Full textAlghamdi, Ali A., Ruben Lostado, and Abdul-Ghani Olabi. "Magneto-Rheological Fluid Technology." In Materials Forming, Machining and Tribology, 43–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45176-8_3.
Full textYang, Jin Long, Chun Lei Dai, and Yong Huang. "Controllable Forming Technology in Gelcasting." In Materials Science Forum, 1325–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1325.
Full textLiu, Gang, Shijian Yuan, and Kaifeng Zhang. "Professor Z. R. Wang’s Contributions to Metal Forming Theory, Technology, and Education." In Forming the Future, 303–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_26.
Full textIdapalapati, Sridhar, Xu Song, N. Venkata Reddy, Narasimalu Srikanth, Farshid Pahlevani, Karthic R. Narayanan, and Mehrdad Zarinejad. "Materials in Metal Forming." In Handbook of Manufacturing Engineering and Technology, 231–84. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_42.
Full textIdapalapati, Sridhar, Xu Song, N. Venkata Reddy, Narasimalu Srikanth, Farshid Pahlevani, Karthic R. Narayanan, and Mehrdad Zarinejad. "Materials in Metal Forming." In Handbook of Manufacturing Engineering and Technology, 1–42. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4976-7_42-1.
Full textConference papers on the topic "Forming technology"
Golovashchenko, Sergey F., Al Krause, and Alan J. Gillard. "Incremental Forming for Aluminum Automotive Technology." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81069.
Full textGaldos, L., A. Sukia, N. Otegi, R. Ortubay, A. Ruiz De La Torre, A. Forgas, F. Rastellini, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "Enhancement of Incremental Sheet Metal Forming Technology by Means of Stretch Forming." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552513.
Full textMoe, Per Thomas, Arnfinn Willa-Hansen, and Sigurd Støren. "Optical Measurement Technology For Aluminium Extrusions." In 10TH ESAFORM CONFERENCE ON MATERIAL FORMING. AIP, 2007. http://dx.doi.org/10.1063/1.2729578.
Full textLaue, Robert, Sebastian Härtel, and Birgit Awiszus. "Radial-rotation profile forming: A new processing technology of incremental sheet metal forming." In PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035042.
Full textOlowinsky, Alexander, Arnold Gillner, and Reinhart Poprawe. "Laser beam micro-forming – A new technology." In ICALEO® ‘98: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1998. http://dx.doi.org/10.2351/1.5059156.
Full textSkoglund, Paul, Senad Dizdar, and Ulf Engström. "High Density Gears by New Forming Technology." In SAE 2002 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-0342.
Full textHambrick, Denise M. "Age Forming Technology Expanded in an Autoclave." In General Aviation Aircraft Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/850885.
Full textYan, Qiufei, Bin Lin, and Kai Wang. "Research on adaptive digital beam forming technology." In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2018. http://dx.doi.org/10.1109/icccbda.2018.8386557.
Full textHua, Ding, Huang Tao, Zhou Ming, and Cai Lan. "Mechanisms and Applications of Laser Forming Technology." In Asia Pacific Automotive Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3704.
Full textAltunina, L. K., V. A. Kuvshinov, and R. G. Shirgazin. "Water Shutoff Technology Employing Gel-Forming Systems." In IOR 2003 - 12th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.7.a003.
Full textReports on the topic "Forming technology"
Kiridena, Vijitha, Ravi Verma, Timothy Gutowski, and John Roth. Rapid Freeform Sheet Metal Forming: Technology Development and System Verification. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1433826.
Full textAuthor, Not Given. Development of millimeter-wave accelerating structures using precision metal forming technology. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/819048.
Full textGENERAL DYNAMICS FORT WORTH TX FORT WORTH DIV. Industrial Technology Modernization Program. Project 7. Part Forming and Tinning (Surface Component Preparation). Phase 2. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada209611.
Full textJohnson, K., M. Smith, C. Lavender, and M. Khalell. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems: Final project report. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10194501.
Full textJames, M., and D. R. Lesuer. Development and Demonstration of Superplastic Roll Forming Technology for Automotive Components Final Report CRADA No. TC-1087-95-B. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1424655.
Full textLesuer, D. R., and H. S. Yang. Development and Demonstration of Superplastic Roll Forming Technology for Automotive Components Final Report CRADA No. TC-1087-95-A. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1424656.
Full textVreeland, Heidi, Christina Norris, Lauren Shum, Jaya Pokuri, Emily Shannon, Anmol Raina, Ayushman Tripathi, et al. Collaborative Efforts to Investigate Emissions From Residential and Municipal Trash Burning in India. RTI Press, September 2018. http://dx.doi.org/10.3768/rtipress.2018.rb.0019.1809.
Full textDöring, Thomas, and Birgit Aigner-Walder. Zukunftsperspektiven der Elektromobilität Treibende Faktoren und in ökonomischer SichtHemmnisse. Sonderforschungsgruppe Institutionenanalyse, 2011. http://dx.doi.org/10.46850/sofia.9783941627109.
Full text