Academic literature on the topic 'Formule de trace de'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Formule de trace de.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Formule de trace de"
Hillairet, Luc. "Formule de trace sur une surface euclidienne à singularités coniques." Comptes Rendus Mathematique 335, no. 12 (December 2002): 1047–52. http://dx.doi.org/10.1016/s1631-073x(02)02596-7.
Full textMœglin, Colette, and J. L. Waldspurger. "La formule des traces locale tordue." Memoirs of the American Mathematical Society 251, no. 1198 (January 2018): 0. http://dx.doi.org/10.1090/memo/1198.
Full textChattopadhyay, Arup, and Kalyan B. Sinha. "Koplienko Trace Formula." Integral Equations and Operator Theory 73, no. 4 (June 21, 2012): 573–87. http://dx.doi.org/10.1007/s00020-012-1978-4.
Full textKnightly, Andrew, and Charles Li. "A relative trace formula proof of the Petersson trace formula." Acta Arithmetica 122, no. 3 (2006): 297–313. http://dx.doi.org/10.4064/aa122-3-5.
Full textFerrari, Axel. "Théorème de l’Indice et Formule des Traces." manuscripta mathematica 124, no. 3 (August 14, 2007): 363–90. http://dx.doi.org/10.1007/s00229-007-0130-2.
Full textHillairet, Luc. "FORMULE DE TRACE SEMI-CLASSIQUE SUR UNE VARIETE DE DIMENSION 3 AVEC UN POTENTIEL DE DIRAC." Communications in Partial Differential Equations 27, no. 9-10 (January 12, 2002): 1751–91. http://dx.doi.org/10.1081/pde-120016127.
Full textAkiyama, Shigeki, and Yoshio Tanigawa. "The Selberg trace formula for modular correspondences." Nagoya Mathematical Journal 117 (March 1990): 93–123. http://dx.doi.org/10.1017/s0027763000001823.
Full textChaudouard, Pierre-Henri, and Michał Zydor. "Le transfert singulier pour la formule des traces de Jacquet–Rallis." Compositio Mathematica 157, no. 2 (February 2021): 303–434. http://dx.doi.org/10.1112/s0010437x20007599.
Full textOkikiolu, Kate. "a related trace formula." Duke Mathematical Journal 79, no. 3 (September 1995): 687–722. http://dx.doi.org/10.1215/s0012-7094-95-07918-6.
Full textArthur, James. "A local trace formula." Publications mathématiques de l'IHÉS 73, no. 1 (December 1991): 5–96. http://dx.doi.org/10.1007/bf02699256.
Full textDissertations / Theses on the topic "Formule de trace de"
Li, Huajie. "Contributions to the relative trace formula of Guo-Jacquet." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7080.
Full textWe establish global and local trace formulae for infinitesimal symmetric spaces of Guo-Jacquet. We also prove several local results concerning the comparison of regular semi-simple terms which are noninvariant weighted orbital integrals. This thesis contains five chapters. In Chapter 1, we recall the motivations and state our main reults. Our work is inspired by a conjecture of Guo-Jacquet, which is an example in the relative Langlands programme, and analytic problems appearing in the relative trace formula approach. In Chapter 2, we establish an infinitesimal variant of Guo-Jacquet trace formula for the case of (GL (2n, D), GL (n, D) ⨉GL (n, D)). It is a kind of Poisson summation formula obtained by an analogue of Arthur’s truncation. We describe regular semi-simple terms as explicit weighted orbital integrals. In Chapter 3, we estabilish a similar formula and have a similar description of regular semi-simple terms for the case of a central simple algebra containing a quadratic extension. Moreover, we state and prove the weighted fundamental lemma thanks to Labesse’s work on the base change for GL(n). In Chapter 4, we establish an infinitesimal invariant local trace formula of Guo-Jacquet over a p-adic field by following works of Waldspurger and Arthur. During the proof, we also obtain an infinitesimal noninvariant local trace formula, Howe’s finiteness for weighted orbital integrals and the representability of the Fourier transform of weighted orbital integrals. In Chapter 5, with the results in previous chapters, we adopt Waldspurger’s strategy on the endoscopic transfer to prove some relations between Fourier transforms of invariant local weighted orbital integrals
Hillairet, Luc. "Contribution d'orbites périodiques diffractives à la formule de trace." Université Joseph Fourier (Grenoble), 2002. https://tel.archives-ouvertes.fr/tel-00001664.
Full textLiu, Bingxiao. "Laplacien hypoelliptique et formule des traces tordue." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS165/document.
Full textIn this thesis, we give an explicit geometric formula for the twisted semisimple orbital integrals associated with the heat kernel on symmetric spaces. For that purpose, we use the method of the hypoelliptic Laplacian developed by Bismut. We show that our results are compatible with classical results in local equivariant index theory. We also use this formula to evaluate the leading term of the asymptotics as d -> + ∞ of the equivariant Ray-Singer analytic torsion associated with a sequence of flat vector bundles Fd on a compact locally symmetric space. We show that the leading term can be evaluated in terms of the W-invariants constructed by Bismut-Ma-Zhang
Ferrari, Axel [Christophe]. "Théorème de l'indice et formule des traces." Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22047.pdf.
Full textOur purpose is to obtain a geometric formula as explicit as possible for the L2 index of a Dirac operator over a locally symmetric pace of finite volume, generalizing Arthur’s formula for the Euler-Poincaré caracteristic
Kret, Arno. "Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112365/document.
Full textWe study the Newton stratification of Shimura varieties of PEL type, at the places of good reduction. We consider the basic stratum of certain simple Shimura varieties of PEL type at a place of good reduction. Under simplifying hypotheses we prove a relation between the l-adic cohomology of this basic stratum and the cohomology of the complex Shimura variety. In particular we obtain explicit formulas for the number of points in the basic stratum over finite fields, in terms of automorphic representations. We obtain our results using the trace formula and truncation of the formula of Kottwitz for the number of points on a Shimura variety over a finite field. We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-type of type (A) is non-empty at a prime of good reduction. This result is already established by Viehmann-Wedhorn; we give a new proof of this theorem. We consider the basic stratum of Shimura varieties associated to certain unitary groups in cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke operators acting on the basic stratum. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain particular cuspidal automorphic representations on Gl_n. The Ramanujan conjecture turns out to be known for these automorphic representations, and therefore we obtain very sharp estimates on the rate of convergence. We prove that any connected reductive group G over a non-Archimedean local field has a cuspidal representation. Together with Erez Lapid we compute the Jacquet module of a Ladder representation at any standard parabolic subgroup of the general linear group over a non-Archimedean local field
Bouthier, Alexis. "Géométrisation du côté orbital de la formule des traces." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112064.
Full textThis main goal of this work is to construct and study the properties of Hitchin fibration for groups which appears naturally when we try to geometrize the trace formula. We begin by constructing this fibration using the Vinberg’s semigroup. On this semigroup, we show that there exists a characteristic polynomial morphism equipped with a natural section, analog at the Kostant’s one in the case of Lie algebras. We also show that there exists on the base of characteristic polynomials a regular centralizer scheme, which is a smooth commutative group scheme.Then, we are interested in some variant of affine Springer fibers, for which we see that the Vinberg’s semigroup appears naturally to obtain an integrality condition analog to Kazhdan-Lusztig’s one. These affine Springer fibers are local incarnation of Hitchin fibers.In a third time, we go back to the global case and give a modular interpretation of this new Hitchin fibration on which we construct an action of a Picard stack, coming from the regular centralizer.The total space of this fibration, even on the generically regular semisimple locus will be singular and we want to understand his intersection complex. This space can be obtained as the intersection of the Hecke stack with the diagonal of the stack of G-bundles and we show that on a sufficiently big open subset of the Hitchin base, the intersection complex of the Hitchin’s space is the restriction of the corresponding intersection complex on the Hecke stack.Finally, in the last part of this work, we establish a support theorem in the case of a singular total space, generalizing Ngo’s theorem et we show that in the case of Hitchin fibration, the supports that appear are related to the endoscopic strata
Cachia, Vincent. "La formule de Trotter-Kato : approximation des semi-groupes en normes d'opérateur et de trace." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2001. http://tel.archives-ouvertes.fr/tel-00341769.
Full textDubertrand, Rémy. "Deux applications du chaos quantique : étude des fonctions d'ondes aléatoires via SLE et description de cavités diélectriques." Paris 11, 2008. http://www.theses.fr/2008PA112354.
Full textDuring my thesis we studied two specific problems in quantum chaos. First we confirmed the percolation mod describing the nodal lines of wavefunction of classically chaotic systems. These lines were described via a certain Schrammm Loewner Evolution process and our study agrees with the recent theorem stating that it is linked with the critical percolation. Secondly we generalized results in quantum chaos weil known for closed billiards to open dielectric cavities. We gave general formulas for a slight pertubation of a circular cavity and proposed a generalized trace formula for these systems. We especially gave the first terms of a Weyl expansion in order to count the resonances of a dielectric cavity. These results agree weil with experimental data and numerical simulations. Both these studies show how fundamental and transverse techniques of quantum chaos are for topical problems
Hachami, Saïd. "Périodes hermitiennes des courbes et application à une formule de chowla-selberg." Nancy 1, 1988. http://www.theses.fr/1988NAN10142.
Full textGiraud, Olivier. "Statistiques spectrales des systèmes diffractifs." Paris 11, 2002. http://www.theses.fr/2002PA112081.
Full textWe are interested in the analytical aspects of the spectral statistics of quantum diffractive systems. Dynamical systems have a classical behaviour which ranges from integrable to chaotic or intermediate, and there seems to be a correspondance between this classical behaviour and the quantum properties of the system. This work is a study of the spectral correlation functions of integrable systems perturbed by a singularity: infinitely small scattering center (delta-like potential), singular corner in a billiard, Aharonov-Bohm flux line. It was possible to obtain analytically the expression of the form factor at the origin for some specific systems: rectangular or circular billiard with Aharonov-Bohm flux line, triangular billiards with "Veech property", barrier billiards. The analytical results agree with numerics and support the existence of a statistical behaviour common to all intermediate systems. In order to obtain the whole expansion of the form factor the contribution of diffractive orbits must be taken into account. We use a semiclassical method which allows to resume all contributions of interactions between periodic and diffractive orbits, and obtain the analytical expansion of the form factor for a rectangular billiard with a scattering center. The distribution of the distance between nearest-neighbours is computed analytically for the same system; its asymptotic behaviour demonstrates that such a system shares features with both integrable and chaotic systems, thus verifying the conjecture for intermediate systems
Books on the topic "Formule de trace de"
Lerner, Igor V., Jonathan P. Keating, and David E. Khmelnitskii, eds. Supersymmetry and Trace Formulae. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4875-1.
Full textArthur, James. A local trace formula. Toronto: Dept. of Mathematics, University of Toronto, 1989.
Find full textMoeglin, Colette, and Jean-Loup Waldspurger. Stabilisation de la formule des traces tordue. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30049-8.
Full textMoeglin, Colette, and Jean-Loup Waldspurger. Stabilisation de la formule des traces tordue. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30058-0.
Full textShokranian, Salahoddin. The Selberg-Arthur Trace Formula. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0092305.
Full textMüller, Werner, Sug Woo Shin, and Nicolas Templier, eds. Geometric Aspects of the Trace Formula. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94833-1.
Full textHejhal, Dennis A., Peter Sarnak, and Audrey Anne Terras, eds. The Selberg Trace Formula and Related Topics. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/conm/053.
Full textWhitney, Robert Steven. Applying trace formula methods to disordered systems. Birmingham: University of Birmingham, 1999.
Find full textLerner, Igor V. Supersymmetry and Trace Formulae: Chaos and Disorder. Boston, MA: Springer US, 1999.
Find full textBook chapters on the topic "Formule de trace de"
Wang, Xueli, and Dingyi Pei. "Trace Formula." In Modular Forms with Integral and Half-Integral Weights, 321–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29302-3_9.
Full textPaul, T., and A. Uribe. "Local Trace Formulæ." In Quasiclassical Methods, 139–44. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1940-8_7.
Full textBergeron, Nicolas. "The Trace Formula." In Universitext, 153–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27666-3_5.
Full textHurt, Norman E. "Selberg Trace Formula." In Mathematical Physics of Quantum Wires and Devices, 175–202. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9626-8_8.
Full textIwaniec, Henryk. "The trace formula." In Spectral Methods of Automorphic Forms, 135–56. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/053/12.
Full textGetz, Jayce R., and Heekyoung Hahn. "Simple Trace Formulae." In An Introduction to Automorphic Representations, 473–506. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-41153-3_18.
Full textShokranian, Salahoddin. "Selberg's trace formula." In Lecture Notes in Mathematics, 11–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0092307.
Full textKnightly, Andrew, and Charles Li. "The trace formula." In Traces of Hecke Operators, 227–77. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/133/04.
Full textGutzwiller, Martin C. "The Trace Formula." In Chaos in Classical and Quantum Mechanics, 282–321. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0983-6_18.
Full textKurasov, Pavel. "The Trace Formula." In Operator Theory: Advances and Applications, 179–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67872-5_8.
Full textConference papers on the topic "Formule de trace de"
Aminof, Benjamin, Giuseppe De Giacomo, Sasha Rubin, and Florian Zuleger. "Proper Linear-time Specifications of Environment Behaviors in Nondeterministic Planning and Reactive Synthesis." In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 38–48. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/4.
Full textCabalar, Pedro, Thomas Eiter, and Davide Soldà. "Contracted Temporal Equilibrium Logic." In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 221–31. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/21.
Full textMaranzatto, Thomas Jacob. "Tree Trace Reconstruction - Reductions to String Trace Reconstruction." In 2024 IEEE International Symposium on Information Theory (ISIT), 885–90. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619306.
Full textLapid, Erez M. "Some Applications of the Trace Formula and the Relative Trace Formula." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0095.
Full textGül, Erdal. "On a regularized trace formula." In 10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0114867.
Full textShokranian, Salahoddin. "Twisted Trace Formula for Hecke Correspondences." In Fourth International Winter Conference on Mathematical Methods in Physics. Trieste, Italy: Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.013.0023.
Full textJeanneret, Yves. "Faire avec le faire communicationnel." In Arts du faire : production et expertise. Limoges: Université de Limoges, 2009. http://dx.doi.org/10.25965/as.3336.
Full textBadanin, Andrey V., and Evgeny L. Korotyaev. "Trace formulas for the beam equation." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756808.
Full textBarthe, Gilles, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura Kovacs, and Matteo Maffei. "Verifying Relational Properties using Trace Logic." In 2019 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2019. http://dx.doi.org/10.23919/fmcad.2019.8894277.
Full textIvanov, Aleksandr V., and Natalia V. Kharuk. "Non-recursive formula for trace of heat kernel." In 2019 Days on Diffraction (DD). IEEE, 2019. http://dx.doi.org/10.1109/dd46733.2019.9016557.
Full textReports on the topic "Formule de trace de"
Baader, Franz, and Marcel Lippmann. Runtime Verification Using a Temporal Description Logic Revisited. Technische Universität Dresden, 2014. http://dx.doi.org/10.25368/2022.203.
Full textMack, Aaron, Mary Szorik, Chandana Sharma, John Cunningham, Nicole Larmore, Bala Ramanathan, Michelle Ferreri, and Harika Vemula. Trace element variation. BioPhorum, March 2022. http://dx.doi.org/10.46220/2022ds001.
Full textChica Sosa, Piedad, Carlos Ignacio Torres Londoño, and Yerson Ferney Porras García. Pruebas unitarias con JUnit. Ediciones Universidad Cooperativa de Colombia, November 2023. https://doi.org/10.16925/gcgp.111.
Full textPutnam, Mike. Automated Trace Metals Analyzer. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada608400.
Full textLight, Max Eugene. Ray Trace Modeling Code. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1542806.
Full textCrandall, K. R. TRACE 3-D documentation. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/6290515.
Full textLanglois, Lyse, Réjean Roy, Guillaume Macaux, Eve Gaumond, Céline Castets-Renard, Pierre-Luc Déziel, Benoit Dupont, et al. Analyse sur l’application de notification de contacts COVI et commentaires de l’équipe de Mila. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, June 2020. http://dx.doi.org/10.61737/fxut5417.
Full textCurrie, L. D., and A. M. Grist. Apatite fission-track data for nine samples from Vancouver Island, British Columbia. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/pkguc1nr5y.
Full textRem, Martin. Trace Theory and Systolic Computations. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada443163.
Full textBenson, S. A., T. A. Erickson, C. A. O`Keefe, K. Katrinak, S. E. Allan, D. J. Hassett, W. B. Hauserman, and C. J. Zygarlicke. Trace metal transformations in gasification. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/125007.
Full text