To see the other types of publications on this topic, follow the link: Formule de trace.

Journal articles on the topic 'Formule de trace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Formule de trace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hillairet, Luc. "Formule de trace sur une surface euclidienne à singularités coniques." Comptes Rendus Mathematique 335, no. 12 (December 2002): 1047–52. http://dx.doi.org/10.1016/s1631-073x(02)02596-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hillairet, Luc. "FORMULE DE TRACE SEMI-CLASSIQUE SUR UNE VARIETE DE DIMENSION 3 AVEC UN POTENTIEL DE DIRAC." Communications in Partial Differential Equations 27, no. 9-10 (January 12, 2002): 1751–91. http://dx.doi.org/10.1081/pde-120016127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zydor, Michał. "LA VARIANTE INFINITÉSIMALE DE LA FORMULE DES TRACES DE JACQUET-RALLIS POUR LES GROUPES LINÉAIRES." Journal of the Institute of Mathematics of Jussieu 17, no. 4 (April 19, 2016): 735–83. http://dx.doi.org/10.1017/s1474748016000141.

Full text
Abstract:
We establish an infinitesimal version of the Jacquet-Rallis trace formula for general linear groups. Our formula is obtained by integrating a kernel truncated à la Arthur multiplied by the absolute value of the determinant to the power $s\in \mathbb{C}$. It has a geometric side which is a sum of distributions $I_{\mathfrak{o}}(s,\cdot )$ indexed by the invariants of the adjoint action of $\text{GL}_{n}(\text{F})$ on $\mathfrak{gl}_{n+1}(\text{F})$ as well as a «spectral side» consisting of the Fourier transforms of the aforementioned distributions. We prove that the distributions $I_{\mathfrak{o}}(s,\cdot )$ are invariant and depend only on the choice of the Haar measure on $\text{GL}_{n}(\mathbb{A})$. For regular semi-simple classes $\mathfrak{o}$, $I_{\mathfrak{o}}(s,\cdot )$ is a relative orbital integral of Jacquet-Rallis. For classes $\mathfrak{o}$ called relatively regular semi-simple, we express $I_{\mathfrak{o}}(s,\cdot )$ in terms of relative orbital integrals regularised by means of zeta functions.
APA, Harvard, Vancouver, ISO, and other styles
4

ROGERS, Carl R. "Et après?" Sociologie et sociétés 9, no. 2 (September 30, 2002): 55–67. http://dx.doi.org/10.7202/001654ar.

Full text
Abstract:
Résumé L'auteur trace un bref aperçu des nouveaux problèmes auxquels a ou aura à faire face un enseignement humain et innovateur, alors qu'il devient de plus en plus une force importante dans le système d'enseignement. Il esquisse quelques-uns des défis auxquels sera confronté l'enseignant en tant que personne, au fur et à mesure que l'enseignement innovateur se développera. Dans le domaine de la recherche, il présente quelques découvertes récentes, toutes trop peu connues et formule aussi l'espoir que la recherche actuelle ne se limite pas à la simple évaluation, mais qu'elle étudie assidûment des rapports de nature "si-alors". Enfin, il spécule sur la prochaine grande frontière de l'apprentissage qui pourrait bien avoir trait à deux des facultés les moins valorisées dans notre culture : soit nos pouvoirs psychiques et intuitifs.
APA, Harvard, Vancouver, ISO, and other styles
5

Garfinkel, Irwin, Robert Haveman, and Lorne Huston. "Les politiques américaines contre la pauvreté : quelques propositions." II. La critique néo-libérale contemporaine et les limites d’intervention étatique, no. 16 (January 12, 2016): 77–93. http://dx.doi.org/10.7202/1034399ar.

Full text
Abstract:
L’article trace l’évolution des politiques de lutte contre la pauvreté depuis 1965. Il décrit ensuite, statistiques à l’appui, les effets des politiques de transferts de revenu sur la pauvreté, l’insécurité et l’inégalité économique, puis sur le travail, l’épargne et la famille. Il établit que les politiques de transferts de revenu ont contribué à réduire la pauvreté et les inégalités mais qu’elles n’ont eu qu’un effet palliatif et provisoire. Elles n’ont pas réussi à augmenter la participation des pauvres au marché du travail. Promouvoir une telle participation exige une intervention sur plusieurs fronts : l’éducation, la qualification professionnelle, les politiques de soutien du revenu, etc. Aucune formule simple ou appliquée de façon isolée ne peut avoir d’impact significatif sur le problème. Les auteurs formulent une série de propositions susceptibles de renforcer la lutte contre la pauvreté.
APA, Harvard, Vancouver, ISO, and other styles
6

Bombara, Giuseppe, and Calin Belta. "Offline and Online Learning of Signal Temporal Logic Formulae Using Decision Trees." ACM Transactions on Cyber-Physical Systems 5, no. 3 (July 2021): 1–23. http://dx.doi.org/10.1145/3433994.

Full text
Abstract:
In this article, we focus on inferring high-level descriptions of a system from its execution traces. Specifically, we consider a classification problem where system behaviors are described using formulae of Signal Temporal Logic (STL). Given a finite set of pairs of system traces and labels, where each label indicates whether the corresponding trace exhibits some system property, we devised a decision-tree-based framework that outputs an STL formula that can distinguish the traces. We also extend this approach to the online learning scenario. In this setting, it is assumed that new signals may arrive over time and the previously inferred formula should be updated to accommodate the new data. The proposed approach presents some advantages over traditional machine learning classifiers. In particular, the produced formulae are interpretable and can be used in other phases of the system’s operation, such as monitoring and control. We present two case studies to illustrate the effectiveness of the proposed algorithms: (1) a fault detection problem in an automotive system and (2) an anomaly detection problem in a maritime environment.
APA, Harvard, Vancouver, ISO, and other styles
7

Zydor, Michał. "Les formules des traces relatives de Jacquet–Rallis grossières." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 762 (May 1, 2020): 195–259. http://dx.doi.org/10.1515/crelle-2018-0027.

Full text
Abstract:
AbstractOn établit les formules des traces relatives de Jacques–Rallis grossières pour les groupes linéaires et unitaires. Les deux formules sont sous la forme suivante: une somme des distributions spectrales est égale à une somme des distributions géométriques. Pour établir les développements spectraux on introduit de nouveaux opérateurs de troncature et on étudie leur propriétés. Du côté géométrique, en utilisant les applications de Cayley, les développements s’obtiennent par un argument de descente vers les espaces tangents pour lesquels les formules sont connues grâce à nos travaux précédents.We establish the coarse relative trace formulae of Jacquet–Rallis for linear and unitary groups. Both formulae are of the form: a sum of spectral distributions equals a sum of geometric distributions. In order to obtain the spectral decompositions we introduce new truncation operators and we investigate their properties. On the geometric side, by means of the Cayley transform, the decompositions are derived from a procedure of descent to the tangent spaces for which the formulae are known thanks to our previous work.
APA, Harvard, Vancouver, ISO, and other styles
8

Akiyama, Shigeki, and Yoshio Tanigawa. "The Selberg trace formula for modular correspondences." Nagoya Mathematical Journal 117 (March 1990): 93–123. http://dx.doi.org/10.1017/s0027763000001823.

Full text
Abstract:
In Selberg [11], he introduced the trace formula and applied it to computations of traces of Hecke operators acting on the space of cusp forms of weight greater than or equal to two. But for the case of weight one, the similar method is not effective. It only gives us a certain expression of the dimension of the space of cusp forms by the residue of the Selberg type zeta function. Here the Selberg type zeta function appears in the contribution from the hyperbolic conjugacy classes when we write the trace formula with a certain kernel function ([3J, [4], [7], [8], [9], [12]).
APA, Harvard, Vancouver, ISO, and other styles
9

Paris, Luis, and Loïc Rabenda. "Virtual and arrow Temperley–Lieb algebras, Markov traces, and virtual link invariants." Journal of Knot Theory and Its Ramifications 30, no. 06 (May 2021): 2150041. http://dx.doi.org/10.1142/s0218216521500413.

Full text
Abstract:
Let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and standard polynomials in the variables [Formula: see text] For [Formula: see text] we denote by [Formula: see text] the virtual braid group on [Formula: see text] strands. We define two towers of algebras [Formula: see text] and [Formula: see text] in terms of diagrams. For each [Formula: see text] we determine presentations for both, [Formula: see text] and [Formula: see text]. We determine sequences of homomorphisms [Formula: see text] and [Formula: see text], we determine Markov traces [Formula: see text] and [Formula: see text], and we show that the invariants for virtual links obtained from these Markov traces are the [Formula: see text]-polynomial for the first trace and the arrow polynomial for the second trace. We show that, for each [Formula: see text] the standard Temperley–Lieb algebra [Formula: see text] embeds into both, [Formula: see text] and [Formula: see text], and that the restrictions to [Formula: see text] of the two Markov traces coincide.
APA, Harvard, Vancouver, ISO, and other styles
10

Delgado, Julio, and Michael Ruzhansky. "The bounded approximation property of variable Lebesgue spaces and nuclearity." MATHEMATICA SCANDINAVICA 122, no. 2 (April 8, 2018): 299. http://dx.doi.org/10.7146/math.scand.a-102962.

Full text
Abstract:
In this paper we prove the bounded approximation property for variable exponent Lebesgue spaces, study the concept of nuclearity on such spaces and apply it to trace formulae such as the Grothendieck-Lidskii formula. We apply the obtained results to derive criteria for nuclearity and trace formulae for periodic operators on $\mathbb{R}^n$ in terms of global symbols.
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Chuan-Fu. "Trace Formula on Transmission Eigenvalues of the Sturm–Liouville Problem." Zeitschrift für Naturforschung A 67, no. 8-9 (September 1, 2012): 429–34. http://dx.doi.org/10.5560/zna.2012-0041.

Full text
Abstract:
In this paper, we consider eigenvalues and traces of a special Sturm-Liouville problem, which originates from an acoustic scattering problem with a spherically symmetric speed of sound. Regularized trace formulae on transmission eigenvalues of the Sturm-Liouville problem are obtained.
APA, Harvard, Vancouver, ISO, and other styles
12

Chattopadhyay, Arup, and Kalyan B. Sinha. "Koplienko Trace Formula." Integral Equations and Operator Theory 73, no. 4 (June 21, 2012): 573–87. http://dx.doi.org/10.1007/s00020-012-1978-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Knightly, Andrew, and Charles Li. "A relative trace formula proof of the Petersson trace formula." Acta Arithmetica 122, no. 3 (2006): 297–313. http://dx.doi.org/10.4064/aa122-3-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Peng, Zhifeng. "Multiplicity Formula and Stable Trace Formula." American Journal of Mathematics 141, no. 4 (2019): 1037–85. http://dx.doi.org/10.1353/ajm.2019.0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Levy, Jason. "A Note on the Relative Trace Formula." Canadian Mathematical Bulletin 38, no. 4 (December 1, 1995): 450–61. http://dx.doi.org/10.4153/cmb-1995-066-x.

Full text
Abstract:
AbstractThis paper deals with the relative trace formula in the case of base change. Two truncations of the kernel are introduced, both based on the ideas of Arthur, and their integrals are shown to be asymptotic to each other. We also consider products of the kernel with automorphic forms, as these appear when comparing trace formulae (see [5]).
APA, Harvard, Vancouver, ISO, and other styles
16

Okikiolu, Kate. "a related trace formula." Duke Mathematical Journal 79, no. 3 (September 1995): 687–722. http://dx.doi.org/10.1215/s0012-7094-95-07918-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Arthur, James. "A local trace formula." Publications mathématiques de l'IHÉS 73, no. 1 (December 1991): 5–96. http://dx.doi.org/10.1007/bf02699256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

CHATTOPADHYAY, ARUP, and KALYAN B. SINHA. "Third order trace formula." Proceedings - Mathematical Sciences 123, no. 4 (November 2013): 547–75. http://dx.doi.org/10.1007/s12044-013-0145-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Peng, ZhiFeng. "Stable local trace formula." Science China Mathematics 57, no. 12 (September 27, 2014): 2509–18. http://dx.doi.org/10.1007/s11425-014-4899-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Flicker, Yuval Z., and David A. Kazhdan. "A simple trace formula." Journal d'Analyse Mathématique 50, no. 1 (December 1988): 189–200. http://dx.doi.org/10.1007/bf02796122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

RAULF, NICOLE, and OLIVER STEIN. "A TRACE FORMULA FOR HECKE OPERATORS ON VECTOR-VALUED MODULAR FORMS." Glasgow Mathematical Journal 59, no. 1 (June 10, 2016): 143–65. http://dx.doi.org/10.1017/s0017089516000094.

Full text
Abstract:
AbstractWe present a ready to compute trace formula for Hecke operators on vector-valued modular forms of integral weight for SL2(ℤ) transforming under the Weil representation. As a corollary, we obtain a ready to compute dimension formula for the corresponding space of vector-valued cusp forms, which is more general than the dimension formulae previously published in the vector-valued setting.
APA, Harvard, Vancouver, ISO, and other styles
22

Man, Chiara Dalla, Andrea Caumo, Rita Basu, Robert Rizza, Gianna Toffolo, and Claudio Cobelli. "Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model." American Journal of Physiology-Endocrinology and Metabolism 289, no. 5 (November 2005): E909—E914. http://dx.doi.org/10.1152/ajpendo.00299.2004.

Full text
Abstract:
The oral glucose minimal model (OMM) measures insulin sensitivity (SI) and the glucose rate of appearance (Ra) of ingested glucose in the presence of physiological changes of insulin and glucose concentrations. However, SI of OMM measures the overall effect of insulin on glucose utilization and glucose production. In this study we show that, by adding a tracer to the oral dose, e.g., of a meal, and by using the labeled version of OMM, OMM* to interpret the data, one can measure the selective effect of insulin on glucose disposal, [Formula: see text]. Eighty-eight individuals underwent both a triple-tracer meal with the tracer-to-tracee clamp technique, providing a model-independent reference of the Ra of ingested glucose ([Formula: see text]) and an insulin-modified labeled intravenous glucose tolerance test (IVGTT*). We show that OMM* provides not only a reliable means of tracing the Ra of ingested glucose (Ra meal) but also accurately measures [Formula: see text]. We do so by comparing OMM* Ra meal with the model-independent [Formula: see text] provided by the tracer-to-tracee clamp technique, while OMM* [Formula: see text] is compared with both [Formula: see text], obtained by using as known input [Formula: see text], and with [Formula: see text] measured during IVGTT*.
APA, Harvard, Vancouver, ISO, and other styles
23

GESZTESY, F., H. HOLDEN, B. SIMON, and Z. ZHAO. "HIGHER ORDER TRACE RELATIONS FOR SCHRÖDINGER OPERATORS." Reviews in Mathematical Physics 07, no. 06 (August 1995): 893–922. http://dx.doi.org/10.1142/s0129055x95000347.

Full text
Abstract:
We extend the trace formula recently proven for general one-dimensional Schrödinger operators which obtains the potential V(x) from a function ξ(x, λ) by deriving trace relations computing moments of ξ(λ, x) dλ in terms of polynomials in the derivatives of V at x. We describe the relation of those polynomials to KdV invariants. We also discuss trace formulae for analogs of ξ associated with boundary conditions other than the Dirichlet boundary condition underlying ξ.
APA, Harvard, Vancouver, ISO, and other styles
24

LEE, PAK-HIN, and ALEXANDR ZAMORZAEV. "PARITY OF THE PARTITION FUNCTION AND TRACES OF SINGULAR MODULI." International Journal of Number Theory 08, no. 02 (March 2012): 395–409. http://dx.doi.org/10.1142/s1793042112500236.

Full text
Abstract:
We prove that the parity of the partition function is given by the "trace" of the Hauptmodul [Formula: see text] for [Formula: see text] at points of complex multiplication. Using Hecke operators, we generalize this to relate the Hecke traces of [Formula: see text] to the partition function modulo 2. We then prove that the generating function for these Hecke traces is equal to the logarithmic derivative of the level 6 Hilbert class polynomial. Finally, we give a procedure involving Hilbert class polynomials for computing the parity of the partition function, and make some speculations about the distribution of these universal polynomials modulo class polynomials.
APA, Harvard, Vancouver, ISO, and other styles
25

Caldeira, Jhone, Aline De Souza Lima, and José Eder Salvador De Vasconcelos. "Representations of automorphism groups of algebras associated to star polygons." Journal of Algebra and Its Applications 18, no. 10 (August 6, 2019): 1950197. http://dx.doi.org/10.1142/s0219498819501974.

Full text
Abstract:
In this paper, we consider the algebra [Formula: see text] associated to Hasse graph of a star polygon. We determine the automorphism group for this algebra and the graded traces [Formula: see text] for each [Formula: see text], which are the graded trace generating functions of [Formula: see text]. Furthermore, we study the representations of [Formula: see text] acting on each homogeneous component of [Formula: see text] and we apply the same technique to the dual algebra [Formula: see text] of [Formula: see text]. More precisely, we consider the algebras associated to Hasse graph of star polygons [Formula: see text] with [Formula: see text] odd.
APA, Harvard, Vancouver, ISO, and other styles
26

Luo, Weilin, Pingjia Liang, Jianfeng Du, Hai Wan, Bo Peng, and Delong Zhang. "Bridging LTLf Inference to GNN Inference for Learning LTLf Formulae." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 9 (June 28, 2022): 9849–57. http://dx.doi.org/10.1609/aaai.v36i9.21221.

Full text
Abstract:
Learning linear temporal logic on finite traces (LTLf) formulae aims to learn a target formula that characterizes the high-level behavior of a system from observation traces in planning. Existing approaches to learning LTLf formulae, however, can hardly learn accurate LTLf formulae from noisy data. It is challenging to design an efficient search mechanism in the large search space in form of arbitrary LTLf formulae while alleviating the wrong search bias resulting from noisy data. In this paper, we tackle this problem by bridging LTLf inference to GNN inference. Our key theoretical contribution is showing that GNN inference can simulate LTLf inference to distinguish traces. Based on our theoretical result, we design a GNN-based approach, GLTLf, which combines GNN inference and parameter interpretation to seek the target formula in the large search space. Thanks to the non-deterministic learning process of GNNs, GLTLf is able to cope with noise. We evaluate GLTLf on various datasets with noise. Our experimental results confirm the effectiveness of GNN inference in learning LTLf formulae and show that GLTLf is superior to the state-of-the-art approaches.
APA, Harvard, Vancouver, ISO, and other styles
27

Scholl, A. J. "A trace formula forF-crystals." Inventiones Mathematicae 79, no. 1 (February 1985): 31–48. http://dx.doi.org/10.1007/bf01388655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Buslaev, V. S., and E. A. Rybakina. "Trace formula in Hamiltonian mechanics." Journal of Soviet Mathematics 28, no. 5 (March 1985): 645–59. http://dx.doi.org/10.1007/bf02112328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Guillemin, Victor, and Alejandro Uribe. "Reduction and the trace formula." Journal of Differential Geometry 32, no. 2 (1990): 315–47. http://dx.doi.org/10.4310/jdg/1214445310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Waltner, Daniel, Petr Braun, Maram Akila, and Thomas Guhr. "Trace formula for interacting spins." Journal of Physics A: Mathematical and Theoretical 50, no. 8 (January 18, 2017): 085304. http://dx.doi.org/10.1088/1751-8121/aa5533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

SCHWARZ, A. S. "LEFSCHETZ TRACE FORMULA AND BRST." Modern Physics Letters A 04, no. 20 (October 10, 1989): 1891–97. http://dx.doi.org/10.1142/s0217732389002148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fang, Jiangxue. "Equivariant trace formula mod p." Comptes Rendus Mathematique 354, no. 4 (April 2016): 335–38. http://dx.doi.org/10.1016/j.crma.2015.12.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Creagh, Stephen C. "Trace Formula for Broken Symmetry." Annals of Physics 248, no. 1 (May 1996): 60–94. http://dx.doi.org/10.1006/aphy.1996.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Patil, Kailash M. "Some applications of trace of powers of matrices to graph theory, algebra and combinatorics." Journal of Discrete Mathematical Sciences and Cryptography 27, no. 2-B (2024): 639–50. http://dx.doi.org/10.47974/jdmsc-1909.

Full text
Abstract:
In this paper, using Cayley Hamilton Theorem, we exhibit a combinatorial formula for Tr(An), (n ∈ ℤ, A ∈M3 (K)), over the field K(= ℝorℂ)using Tr (A), det(A) and sum of principal minors of A. Further, a formula for ∑nk=0 Tr(Ak) is derived. For specific values of Tr(A) and det(A), the formula of Tr(An) is highly simplified. We exhibit some applications of our results in Graph Theory, Algebra and Combinatorics. We have verified our results on various matrices using Scilab and found that Scilabfails tremendously because of the truncation. But our formulae give exact result.
APA, Harvard, Vancouver, ISO, and other styles
35

Xiang, Zhengyu. "Twisted Lefschetz number formula and $p$-adic trace formula." Transactions of the American Mathematical Society 371, no. 8 (September 18, 2018): 5787–821. http://dx.doi.org/10.1090/tran/7522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Oropeza, Ernesto V., and George A. McMechan. "Anisotropic parsimonious prestack depth migration." GEOPHYSICS 78, no. 1 (January 1, 2013): S25—S36. http://dx.doi.org/10.1190/geo2011-0408.1.

Full text
Abstract:
An efficient Kirchhoff-style prestack depth migration, called “parsimonious” migration, was developed a decade ago for isotropic 2D and 3D media by using measured slownesses to reduce the amount of ray tracing by orders of magnitude. It is conceptually similar to “map” migration, but its implementation has some differences. We have extended this approach to 2D tilted transversely isotropic (TTI) media and illustrated it with synthetic P-wave data. Although the framework of isotropic parsimonious may be retained, the extension to TTI media requires redevelopment of each of the numerical components, calculation of the phase and group velocity for TTI media, development of a new two-point anisotropic ray tracer, and substitution of an initial-angle isotropic shooting ray-trace algorithm for an anisotropic one. The model parameterization consists of Thomsen’s parameters ([Formula: see text], [Formula: see text], [Formula: see text]) and the tilt angle of the symmetry axis of the TI medium. The parsimonious anisotropic migration algorithm is successfully applied to synthetic data from a TTI version of the Marmousi2 model. The quality of the image improves by weighting the impulse response by the calculation of the anisotropic Fresnel radius. The accuracy and speed of this migration makes it useful for anisotropic velocity model building. The elapsed computing time for 101 shots for the Marmousi2 TTI model is 35 s per shot (each with 501 traces) in 32 Opteron cores.
APA, Harvard, Vancouver, ISO, and other styles
37

Yao, Keiko, Kinuko Goto, Akiko Nishimura, Reina Shimazu, Satoshi Tachikawa, and Takehiko Iijima. "A Formula for Estimating the Appropriate Tube Depth for Intubation." Anesthesia Progress 66, no. 1 (March 1, 2019): 8–13. http://dx.doi.org/10.2344/anpr-65-04-04.

Full text
Abstract:
An estimation of the appropriate tubing depth for fixation is helpful to prevent inadvertent endobronchial intubation and prolapse of cuff from the vocal cord. A feasible estimation formula should be established. We measured the anatomical length of the upper-airway tract through the oral and nasal pathways on cephalometric radiographs and tried to establish the estimation formula from the height of the patient. The oral upper-airway tract was measured from the tip of the incisor to the vocal cord. The nasal upper-airway tract was measured from the tip of the nostril to the vocal cord. The tracts were smoothly traced by using software. The length of the oral upper-airway tract was 13.2 ± 0.8 cm, and the nasal upper-airway tract was 16.1 ± 0.9 cm. We found no gender difference (p > .05). The correlations between the patients' height and the length of the oral and nasal upper-airway tracts were 0.692 and 0.760, respectively. We found that the formulas (height/10) − 3 (in cm) for oral upper-airway and (height/10) + 1 (in cm) for nasal upper-airway tract are the simple fit estimation formulas. The average error and standard deviation of the estimated values from the measured values were 0.50 ± 0.66 cm for the oral tract and 0.39 ± 0.63 cm for the nasal tract. Thus, considering the length of the intubation marker of each product (DM), we would like to propose the length of tube fixation as (height/10) + 1 + DM for nasal intubation and (height/10) − 3 + DM for oral intubation. In conclusion, the estimation formulas of (height/10) − 3 + DM and (height/10) + 1 + DM for oral and nasal intubation, respectively, are within almost 1 cm error in most cases.
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Fanchao, Dixin Tang, Haotian Li, and Aditya G. Parameswaran. "Visualizing Spreadsheet Formula Graphs Compactly." Proceedings of the VLDB Endowment 16, no. 12 (August 2023): 4030–33. http://dx.doi.org/10.14778/3611540.3611613.

Full text
Abstract:
Spreadsheets are a ubiquitous data analysis tool, empowering non-programmers and programmers alike to easily express their computations by writing formulae alongside data. The dependencies created by formulae are tracked as formula graphs, which play a central role in many spreadsheet applications and are critical to the interactivity and usability of spreadsheet systems. Unfortunately, as formula graphs become large and complex, it becomes harder for end-users to make sense of formula graphs and trace the dependents or precedents of cells to check the accuracy of individual formulae and identify sources of errors. In this paper, we demonstrate a spreadsheet formula graph visualization tool, TACO-Lens, developed as a plugin for Microsoft Excel. Our plugin leverages TACO, our framework for compactly and efficiently representing formula graphs. TACO compresses formula graphs using a key spreadsheet property: tabular locality, which means that cells close to each other are likely to have similar formula structures. This compact representation enables end-users to more easily consume complex dependencies and reduces the response time for tracing dependents and precedents. TACO-Lens, our visualization plugin, depicts the compact representation of TACO and supports users in visually tracing dependents and precedents. In this demonstration, attendees can compare the visualizations of different formula graphs using TACO, Excel's built-in dependency tracing tool, and an approach that does not compress formula graphs, and quantitatively compare the different response time of different approaches.
APA, Harvard, Vancouver, ISO, and other styles
39

BÁNTAY, PETER, and PETER VECSERNYÉS. "MAPPING CLASS GROUP REPRESENTATIONS AND GENERALIZED VERLINDE FORMULA." International Journal of Modern Physics A 14, no. 09 (April 10, 1999): 1325–35. http://dx.doi.org/10.1142/s0217751x99000683.

Full text
Abstract:
Unitary representations of centrally extended mapping class groups [Formula: see text], g ≥ 1 are given in terms of a rational Hopf algebra H, and a related generalization of the Verlinde formula is presented. Formulae expressing the traces of mapping class group elements in terms of the fusion rules, quantum dimensions and statics phases are proposed.
APA, Harvard, Vancouver, ISO, and other styles
40

Chō, Muneo, and Tadasi Huruya. "Trace formulae for p-hyponormal operators." Studia Mathematica 161, no. 1 (2004): 1–18. http://dx.doi.org/10.4064/sm161-1-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Müller, Werner, Sug Woo Shin, Birgit Speh, and Nicolas Templier. "Harmonic Analysis and the Trace Formula." Oberwolfach Reports 14, no. 2 (April 27, 2018): 1551–630. http://dx.doi.org/10.4171/owr/2017/25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mehlig, Bernhard, and Michael Wilkinson. "Semiclassical trace formulae using coherent states." Annalen der Physik 513, no. 6-7 (June 2001): 541–59. http://dx.doi.org/10.1002/andp.200151306-705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sinha, Kalyan B., and A. N. Mohapatra. "Spectral shift function and trace formula." Proceedings / Indian Academy of Sciences 104, no. 4 (November 1994): 819–53. http://dx.doi.org/10.1007/bf02830804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

CHŌ, Muneo, and Tadasi HURUYA. "Trace Formula for Partial Isometry Case." Tokyo Journal of Mathematics 32, no. 1 (June 2009): 27–32. http://dx.doi.org/10.3836/tjm/1249648407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Guillemin, V., and A. Uribe. "The trace formula for vector bundles." Bulletin of the American Mathematical Society 15, no. 2 (October 1, 1986): 222–25. http://dx.doi.org/10.1090/s0273-0979-1986-15482-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sano, Mitsusada M. "Trace formula of quantum Liouville operator." Physical Review E 59, no. 4 (April 1, 1999): R3795—R3798. http://dx.doi.org/10.1103/physreve.59.r3795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jacquet, Herv�, King F. Lai, and Stephen Rallis. "A trace formula for symmetric spaces." Duke Mathematical Journal 70, no. 2 (May 1993): 305–72. http://dx.doi.org/10.1215/s0012-7094-93-07006-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mao, Zhengyu, and Stephen Rallis. "A trace formula for dual pairs." Duke Mathematical Journal 87, no. 2 (March 1997): 321–41. http://dx.doi.org/10.1215/s0012-7094-97-08712-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nenciu, Irina. "A note on circular trace formulae." Proceedings of the American Mathematical Society 136, no. 08 (April 8, 2008): 2785–92. http://dx.doi.org/10.1090/s0002-9939-08-09132-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Rongwei. "A trace formula for isometric pairs." Proceedings of the American Mathematical Society 131, no. 2 (June 5, 2002): 533–41. http://dx.doi.org/10.1090/s0002-9939-02-06687-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography