Academic literature on the topic 'Fractal image coding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractal image coding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fractal image coding"

1

LIAN, SHIGUO, XI CHEN, and DENGPAN YE. "SECURE FRACTAL IMAGE CODING BASED ON FRACTAL PARAMETER ENCRYPTION." Fractals 17, no. 02 (2009): 149–60. http://dx.doi.org/10.1142/s0218348x09004405.

Full text
Abstract:
In recent work, various fractal image coding methods are reported, which adopt the self-similarity of images to compress the size of images. However, till now, no solutions for the security of fractal encoded images have been provided. In this paper, a secure fractal image coding scheme is proposed and evaluated, which encrypts some of the fractal parameters during fractal encoding, and thus, produces the encrypted and encoded image. The encrypted image can only be recovered by the correct key. To maintain security and efficiency, only the suitable parameters are selected and encrypted through investigating the properties of various fractal parameters, including parameter space, parameter distribution and parameter sensitivity. The encryption process does not change the file format, keeps secure in perception, and costs little time or computational resources. These properties make it suitable for secure image encoding or transmission.
APA, Harvard, Vancouver, ISO, and other styles
2

Barthel, Kai Uwe. "Entropy Constrained Fractal Image Coding." Fractals 05, supp01 (1997): 17–26. http://dx.doi.org/10.1142/s0218348x97000607.

Full text
Abstract:
In this paper we present an entropy constrained fractal coding scheme. In order to get high compression rates, previous fractal coders used hierarchical coding schemes with variable range block sizes. Our scheme uses constant range block sizes, but the complexity of the fractal transformations is adapted to the image contents. The entropy of the fractal code can be significantly reduced by introducing geometrical codebooks of variable size and a variable order luminance transformation. We propose a luminance transformation consisting of a unification of fractal and transform coding. With this transformation both inter- and intra- block redundancy of an image can be exploited to get higher coding gain. The coding results obtained with our new scheme are superior compared to conventional fractal and transform coding schemes.
APA, Harvard, Vancouver, ISO, and other styles
3

LU, JIAN, JIAPENG TIAN, CHEN XU, and YURU ZOU. "A DICTIONARY LEARNING APPROACH FOR FRACTAL IMAGE CODING." Fractals 27, no. 02 (2019): 1950020. http://dx.doi.org/10.1142/s0218348x19500208.

Full text
Abstract:
In recent years, sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, this paper investigates incorporating a dictionary learning approach into fractal image coding, which leads to a new model containing three terms: a patch-based sparse representation prior over a learned dictionary, a quadratic term measuring the closeness of the underlying image to a fractal image, and a data-fidelity term capturing the statistics of Gaussian noise. After the dictionary is learned, the resulting optimization problem with fractal coding can be solved effectively. The new method can not only efficiently recover noisy images, but also admirably achieve fractal image noiseless coding/compression. Experimental results suggest that in terms of visual quality, peak-signal-to-noise ratio, structural similarity index and mean absolute error, the proposed method significantly outperforms the state-of-the-art methods.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yuanxu, Yupin Luo, and Dongcheng Hu. "Image superresolution using fractal coding." Optical Engineering 47, no. 1 (2008): 017007. http://dx.doi.org/10.1117/1.2835453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jacquin, A. E. "Fractal image coding: a review." Proceedings of the IEEE 81, no. 10 (1993): 1451–65. http://dx.doi.org/10.1109/5.241507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ida, T., and Y. Sambonsugi. "Image segmentation using fractal coding." IEEE Transactions on Circuits and Systems for Video Technology 5, no. 6 (1995): 567–70. http://dx.doi.org/10.1109/76.477072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khaitu, Shree Ram, and Sanjeeb Prasad Panday. "Fractal Image Compression Using Canonical Huffman Coding." Journal of the Institute of Engineering 15, no. 1 (2020): 91–105. http://dx.doi.org/10.3126/jie.v15i1.27718.

Full text
Abstract:
Image Compression techniques have become a very important subject with the rapid growth of multimedia application. The main motivations behind the image compression are for the efficient and lossless transmission as well as for storage of digital data. Image Compression techniques are of two types; Lossless and Lossy compression techniques. Lossy compression techniques are applied for the natural images as minor loss of the data are acceptable. Entropy encoding is the lossless compression scheme that is independent with particular features of the media as it has its own unique codes and symbols. Huffman coding is an entropy coding approach for efficient transmission of data. This paper highlights the fractal image compression method based on the fractal features and searching and finding the best replacement blocks for the original image. Canonical Huffman coding which provides good fractal compression than arithmetic coding is used in this paper. The result obtained depicts that Canonical Huffman coding based fractal compression technique increases the speed of the compression and has better PNSR as well as better compression ratio than standard Huffman coding.
APA, Harvard, Vancouver, ISO, and other styles
8

YUEN, CHING-HUNG, and KWOK-WO WONG. "CRYPTANALYSIS ON SECURE FRACTAL IMAGE CODING BASED ON FRACTAL PARAMETER ENCRYPTION." Fractals 20, no. 01 (2012): 41–51. http://dx.doi.org/10.1142/s0218348x12500041.

Full text
Abstract:
The vulnerabilities of the selective encryption scheme for fractal image coding proposed by Lian et al.1 are identified. By comparing multiple cipher-images of the same plain-image encrypted with different keys, the positions of unencrypted parameters in each encoded block are located. This allows the adversary to recover the encrypted depth of the quadtree by observing the length of each matched domain block. With this depth information and the unencrypted parameters, the adversary is able to reconstruct an intelligent image. Experimental results show that some standard test images can be successfully decoded and recognized by replacing the encrypted contrast scaling factor and brightness offset with specific values. Some remedial approaches are suggested to enhance the security of the scheme.
APA, Harvard, Vancouver, ISO, and other styles
9

Dalui, Indrani, SurajitGoon, and Avisek Chatterjee. "A NEW APPROACH OF FRACTAL COMPRESSION USING COLOR IMAGE." International Journal of Engineering Technologies and Management Research 6, no. 6 (2020): 74–71. http://dx.doi.org/10.29121/ijetmr.v6.i6.2019.395.

Full text
Abstract:
Fractal image compression depends on self-similarity, where one segment of a image is like the other one segment of a similar picture. Fractal coding is constantly connected to grey level images. The simplest technique to encode a color image by gray- scale fractal image coding algorithm is to part the RGB color image into three Channels - red, green and blue, and compress them independently by regarding each color segment as a specific gray-scale image. The colorimetric association of RGB color pictures is examined through the calculation of the relationship essential of their three-dimensional histogram. For normal color images, as a typical conduct, the connection necessary is found to pursue a power law, with a non- integer exponent type of a given image. This conduct recognizes a fractal or multiscale self-comparable sharing of the colors contained, in average characteristic pictures. This finding of a conceivable fractal structure in the colorimetric association of regular images complement other fractal properties recently saw in their spatial association. Such fractal colorimetric properties might be useful to the characterization and demonstrating of natural images, and may add to advance in vision. The outcomes got demonstrate that the fractal-based compression for the color image fills in similarly with respect to the color image.
APA, Harvard, Vancouver, ISO, and other styles
10

Götting, Detlef, Achim Ibenthal, and Rolf-Rainer Grigat. "Fractal Image Coding and Magnification Using Invariant Features." Fractals 05, supp01 (1997): 65–74. http://dx.doi.org/10.1142/s0218348x97000644.

Full text
Abstract:
Fractal image coding has significant potential for the compression of still and moving images and also for scaling up images. The objective of our investigations was twofold. First, compression ratios of factor 60 and more for still images have been achieved, yielding a better quality of the decoded picture material than standard methods like JPEG. Second, image enlargement up to factors of 16 per dimension has been realized by means of fractal zoom, leading to natural and sharp representation of the scaled image content. Quality improvements were achieved due to the introduction of an extended luminance transform. In order to reduce the computational complexity of the encoding process, a new class of simple and suited invariant features is proposed, facilitating the search in the multidimensional space spanned by image domains and affine transforms.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!