Academic literature on the topic 'Fractal interpolation functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractal interpolation functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractal interpolation functions"
Al-Jawfi, Rashad A. "3D Fractal Interpolation Functions." Nanoscience and Nanotechnology Letters 12, no. 1 (January 1, 2020): 120–23. http://dx.doi.org/10.1166/nnl.2020.3081.
Full textBouboulis, P., and L. Dalla. "Fractal Interpolation Surfaces derived from Fractal Interpolation Functions." Journal of Mathematical Analysis and Applications 336, no. 2 (December 2007): 919–36. http://dx.doi.org/10.1016/j.jmaa.2007.01.112.
Full textBarnsley, Michael F. "Fractal functions and interpolation." Constructive Approximation 2, no. 1 (December 1986): 303–29. http://dx.doi.org/10.1007/bf01893434.
Full textBarnsley, M. F., J. Elton, D. Hardin, and P. Massopust. "Hidden Variable Fractal Interpolation Functions." SIAM Journal on Mathematical Analysis 20, no. 5 (September 1989): 1218–42. http://dx.doi.org/10.1137/0520080.
Full textDENİZ, Ali, and Yunus ÖZDEMİR. "Graph-directed fractal interpolation functions." TURKISH JOURNAL OF MATHEMATICS 41 (2017): 829–40. http://dx.doi.org/10.3906/mat-1604-39.
Full textChand, A. K. B., N. Vijender, P. Viswanathan, and A. V. Tetenov. "Affine zipper fractal interpolation functions." BIT Numerical Mathematics 60, no. 2 (September 6, 2019): 319–44. http://dx.doi.org/10.1007/s10543-019-00774-3.
Full textDrakopoulos, V., and N. Vijender. "Univariable affine fractal interpolation functions." Theoretical and Mathematical Physics 207, no. 3 (June 2021): 689–700. http://dx.doi.org/10.1134/s0040577921060015.
Full textKAPOOR, G. P., and SRIJANANI ANURAG PRASAD. "CUBIC SPLINE SUPER FRACTAL INTERPOLATION FUNCTIONS." Fractals 22, no. 01n02 (March 2014): 1450005. http://dx.doi.org/10.1142/s0218348x14500054.
Full textIgudesman, Konstantin, Marsel Davletbaev, and Gleb Shabernev. "New Approach to Fractal Approximation of Vector-Functions." Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/278313.
Full textNAVASCUÉS, M. A., S. K. KATIYAR, and A. K. B. CHAND. "MULTIVARIATE AFFINE FRACTAL INTERPOLATION." Fractals 28, no. 07 (November 2020): 2050136. http://dx.doi.org/10.1142/s0218348x20501364.
Full textDissertations / Theses on the topic "Fractal interpolation functions"
Medišauskas, Edvinas. "Koliažu grįstos fraktalinių interpoliacinių funkcijų generavimo procedūros sudarymas ir tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_143711-31633.
Full textIn the paper, a new method (tool) for the generation of fractal interpolation functions is presented. The proposed interpolation tool is oriented to process data arrays having links with real-world objects. The interpolation process itself explores self-similiarities found within data arrays under processing, as well as exciting properties of the local collage theorem. Some preliminary experimental results are presented.
Treifi, Muhammad. "Fractal-like finite element method and strain energy approach for computational modelling and analysis of geometrically V-notched plates." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/fractallike-finite-element-method-and-strain-energy-approach-for-computational-modelling-and-analysisof-geometrically-vnotched-plates(93e63366-8eef-4a29-88a4-0c89cf13ec1f).html.
Full textJančiukaitė, Giedrė. "Teoriniai ir praktiniai fraktalinių interpoliacinių funkcijų sudarymo aspektai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_161133-37268.
Full textPesquet-Popescu, Béatrice. "Modélisation bidimensionnelle de processus non stationnaires et application à l'étude du fond sous-marin." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0021.
Full textSendrowski, Janek. "Feigenbaum Scaling." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96635.
Full textBook chapters on the topic "Fractal interpolation functions"
Hardin, Douglas P. "Wavelets are Piecewise Fractal Interpolation Functions." In Fractals in Multimedia, 121–35. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4684-9244-6_6.
Full textJha, Sangita, and A. K. B. Chand. "Zipper Rational Quadratic Fractal Interpolation Functions." In Advances in Intelligent Systems and Computing, 229–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5411-7_18.
Full textChand, A. K. B., and K. R. Tyada. "Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions." In Mathematics and Computing, 187–202. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2452-5_13.
Full textChand, A. K. B., and K. R. Tyada. "Constrained 2D Data Interpolation Using Rational Cubic Fractal Functions." In Mathematical Analysis and its Applications, 593–607. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2485-3_49.
Full textChand, A. K. B., and K. M. Reddy. "Monotonicity Preserving Rational Cubic Graph-Directed Fractal Interpolation Functions." In Advances in Intelligent Systems and Computing, 253–67. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5411-7_20.
Full textBerkner, K. "A Wavelet-based Solution to the Inverse Problem for Fractal Interpolation Functions." In Fractals in Engineering, 81–92. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0995-2_7.
Full textChand, A. K. B., P. Viswanathan, and K. M. Reddy. "A Novel Approach to Surface Interpolation: Marriage of Coons Technique and Univariate Fractal Functions." In Mathematical Analysis and its Applications, 577–92. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2485-3_48.
Full textBanerjee, Santo, D. Easwaramoorthy, and A. Gowrisankar. "Fractal Interpolation Function for Countable Data." In Understanding Complex Systems, 61–77. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62672-3_4.
Full textChand, A. K. B., and N. Vijender. "$$\mathcal{C}^{1}$$ -Rational Cubic Fractal Interpolation Surface Using Functional Values." In Fractals, Wavelets, and their Applications, 349–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08105-2_22.
Full textRi, SongIl, and Vasileios Drakopoulos. "How Are Fractal Interpolation Functions Related to Several Contractions?" In Mathematical Theorems - Boundary Value Problems and Approximations. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92662.
Full textConference papers on the topic "Fractal interpolation functions"
Chand, A. K. B., and P. Viswanathan. "Cubic hermite and cubic spline fractal interpolation functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756439.
Full textDRAKOPOULOS, V., and L. DALLA. "SPACE-FILLING CURVES GENERATED BY FRACTAL INTERPOLATION FUNCTIONS." In Proceedings of the Fourth International Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291071_0080.
Full textKurdila, Andrew, Tong Sun, and Praveen Grama. "Affine fractal interpolation functions and wavelet-based finite elements." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1410.
Full textZHANG, BIN, JUNFENG WANG, and GUOXIANG SONG. "THE CONSTRUCTION OF BIORTHOGONAL MULTI-SCALING FUNCTIONS POSSESSING HIGHER APPROXIMATION ORDER WITH FRACTAL INTERPOLATION FUNCTIONS." In Proceedings of the Third International Conference on WAA. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812796769_0102.
Full textCraciunescu, Oana I., Shiva K. Das, Terrence Z. Wong, and Thaddeus V. Samulski. "Fractal Reconstruction of Breast Perfusion Before and After Hyperthermia Treatments." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33692.
Full textTreifi, Muhammad, Derek K. L. Tsang, and S. Olutunde Oyadiji. "Applications of the Fractal-Like Finite Element Method to Sharp Notched Plates." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35563.
Full textLevkovich-Maslyuk, Leonid I. "Determination of the scaling parameters of affine fractal interpolation functions with the aid of wavelet analysis." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 1996. http://dx.doi.org/10.1117/12.255302.
Full textBedabrata Chand, Arya Kumar. "Natural Bicubic Spline Coalescence Fractal Interpolation Function." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs53.
Full textTreifi, Muhammad, and S. Olutunde Oyadiji. "Computations of SIFs for Non-Symmetric V-Notched Plates by the FFEM." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86585.
Full textYe, Ruisong, Yucheng Chen, and Qiulin Wu. "A Color Image Encryption Scheme Using Inverse Fractal Interpolation Function." In 2018 IEEE 4th International Conference on Computer and Communications (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/compcomm.2018.8780765.
Full text