Academic literature on the topic 'Fractal measure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractal measure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractal measure"
Mörters, Peter, and David Preiss. "Tangent measure distributions of fractal measures." Mathematische Annalen 312, no. 1 (September 1, 1998): 53–93. http://dx.doi.org/10.1007/s002080050212.
Full textChen, Yanguang. "Fractal Modeling and Fractal Dimension Description of Urban Morphology." Entropy 22, no. 9 (August 30, 2020): 961. http://dx.doi.org/10.3390/e22090961.
Full textKadanoff, Leo P. "Fractal Singularities in a Measure and How to Measure Singularities on a Fractal." Progress of Theoretical Physics Supplement 86 (1986): 383–86. http://dx.doi.org/10.1143/ptps.86.383.
Full textSENGUPTA, KAUSHIK, and K. J. VINOY. "A NEW MEASURE OF LACUNARITY FOR GENERALIZED FRACTALS AND ITS IMPACT IN THE ELECTROMAGNETIC BEHAVIOR OF KOCH DIPOLE ANTENNAS." Fractals 14, no. 04 (December 2006): 271–82. http://dx.doi.org/10.1142/s0218348x06003313.
Full textFalconer, Kenneth J., and Gerald A. Edgar. "Measure, Topology and Fractal Geometry." Mathematical Gazette 75, no. 472 (June 1991): 237. http://dx.doi.org/10.2307/3620293.
Full textNorton, Alec, and Gerald A. Edgar. "Measure, Topology, and Fractal Geometry." American Mathematical Monthly 99, no. 4 (April 1992): 378. http://dx.doi.org/10.2307/2324919.
Full textTan, Teewoon, and Hong Yan. "The fractal neighbor distance measure." Pattern Recognition 35, no. 6 (June 2002): 1371–87. http://dx.doi.org/10.1016/s0031-3203(01)00125-x.
Full textKolb, M. "Harmonic measure for fractal objects." Nuclear Physics B - Proceedings Supplements 5, no. 1 (September 1988): 129–34. http://dx.doi.org/10.1016/0920-5632(88)90027-8.
Full textChen, Yanguang. "Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents." Discrete Dynamics in Nature and Society 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/194715.
Full textSIMMONS, DAVID. "On interpreting Patterson–Sullivan measures of geometrically finite groups as Hausdorff and packing measures." Ergodic Theory and Dynamical Systems 36, no. 8 (July 21, 2015): 2675–86. http://dx.doi.org/10.1017/etds.2015.27.
Full textDissertations / Theses on the topic "Fractal measure"
Törnblom, Arvid. "Measure theory, fractal geometry and their applications on digital sundials." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435354.
Full textChildress, Scot Paul. "Quantum measures, arithmetic coils, and generalized fractal strings." Diss., UC access only, 2009. http://proquest.umi.com/pqdweb?index=128&did=1871850181&SrchMode=1&sid=1&Fmt=7&retrieveGroup=0&VType=PQD&VInst=PROD&RQT=309&VName=PQD&TS=1270491013&clientId=48051.
Full textIncludes abstract. Includes bibliographical references (leaves 202-204) and index. Issued in print and online. Available via ProQuest Digital Dissertations.
Siebert, Kitzeln B. "A modern presentation of "dimension and outer measure"." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211395297.
Full textPoosapadi, Arjunan Sridhar, and sridhar arjunan@rmit edu au. "Fractal features of Surface Electromyogram: A new measure for low level muscle activation." RMIT University. Electrical and Computer Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090629.095851.
Full textLeifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.
Full textFractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.
In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.
A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Simonini, Marina. "Fractal sets and their applications in medicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8763/.
Full textInui, Kanji. "Study of the fractals generated by contractive mappings and their dimensions." Kyoto University, 2020. http://hdl.handle.net/2433/253370.
Full text0048
新制・課程博士
博士(人間・環境学)
甲第22534号
人博第937号
新制||人||223(附属図書館)
2019||人博||937(吉田南総合図書館)
京都大学大学院人間・環境学研究科共生人間学専攻
(主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史
学位規則第4条第1項該当
Wang, Nancy. "Fractal Sets: Dynamical, Dimensional and Topological Properties." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233147.
Full textFraktaler är ett relativt nytt ämne inom matematik som fick sitt stora genomslag först efter 60-talet. En fraktal är ett självliknande mönster med struktur i alla skalor. Några vardagliga exempel på fraktaler är spiralkaktus, romanescobroccoli, mänskliga hjärnan, blodkärlen och Sveriges fastlandskust. Bråktalsdimension är en typ av dimension där dimensionsindexet tillåts att anta alla icke-negativa reella tal. Inom fraktalgeometri kan dimensionsindexet betraktas som ett komplexitetsindex av mönstret med avseende på hur den lokala geometrin förändras beroende på vilken skala mönstret betraktas i. Under det senaste decenniet har fraktalanalysen använts alltmer flitigt inom tekniska och vetenskapliga tillämpningar. Bland annat har fraktalanalysen använts i signal- och bildkompression, dator- och videoformgivning, neurovetenskap och fraktalbaserad cancerdiagnos. Denna studie består av två huvuddelar. Den första delen fokuserar på att förstår hur en fraktal kan uppstå i ett kaotiskt dynamiskt system. För att vara mer specifik studerades den logistiska funktionen och hur denna ickelinjära avbildning genererar en oregelbunden Cantormängd på intervalet [0,1]. Vidare, för att förstå den oregelbundna Cantormängden studerades Cantormängden (eng. the Cantor Middle-Thirds set) och de generaliserade Cantormängderna, vilka alla har noll längd. För att kunna jämföra de olika Cantormängderna med avseende på storlek, leds denna studie vidare till dimensionsanalys av fraktaler som är huvudämnet i den andra delen av denna studie. Olika topologiska fraktaler presenterades, tre olika definitioner av dimension introducerades, bland annat lådräkningsdimensionen och Hausdorffdimensionen. Slutligen approximerades dimensionen av den oregelbundna Cantormängden med hjälp av Hausdorffdimensionen. Denna studie demonstrerar att Hausdorffdimensionen har större omfattning och mer flexibilitet för fraktalstudier.
Farkas, Ábel. "Dimension and measure theory of self-similar structures with no separation condition." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7854.
Full textBoore, Graeme C. "Directed graph iterated function systems." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2109.
Full textBooks on the topic "Fractal measure"
Edgar, Gerald A. Measure, topology, and fractal geometry. New York: Springer-Verlag, 1990.
Find full textEdgar, Gerald A. Measure, topology and fractal geometry. New York: Springer-Verlag, 1990.
Find full textEdgar, Gerald A. Measure, topology, and fractal geometry. 2nd ed. New York: Springer-Verlag, 2008.
Find full textEdgar, Gerald A. Measure, Topology, and Fractal Geometry. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-4134-6.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. Atomicity through Fractal Measure Theory. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6.
Full textEdgar, Gerald, ed. Measure, Topology, and Fractal Geometry. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-74749-1.
Full textEdgar, Gerald A. Integral, Probability, and Fractal Measures. New York, NY: Springer New York, 1998.
Find full textFalconer, K. J. The geometry of fractal sets. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textBook chapters on the topic "Fractal measure"
Barnsley, Michael F., Brendan Harding, and Miroslav Rypka. "Measure Preserving Fractal Homeomorphisms." In Fractals, Wavelets, and their Applications, 79–102. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08105-2_5.
Full textTricot, Claude. "Perfect Sets and Their Measure." In Curves and Fractal Dimension, 1–12. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4170-6_1.
Full textBlath, Jochen. "Measure-valued Processes, Self-similarity and Flickering Random Measures." In Fractal Geometry and Stochastics IV, 175–96. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0030-9_6.
Full textTricot, Claude. "Parameterized Curves, Support of a Measure." In Curves and Fractal Dimension, 59–70. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4170-6_6.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "Several hypertopologies: A short overview." In Atomicity through Fractal Measure Theory, 1–7. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_1.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "Extended atomicity through non-differentiability and its physical implications." In Atomicity through Fractal Measure Theory, 133–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_10.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "On a multifractal theory of motion in a non-differentiable space: Toward a possible multifractal theory of measure." In Atomicity through Fractal Measure Theory, 163–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_11.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "A mathematical-physical approach on regularity in hit-and-miss hypertopologies for fuzzy set multifunctions." In Atomicity through Fractal Measure Theory, 9–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_2.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "Non-atomic set multifunctions." In Atomicity through Fractal Measure Theory, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_3.
Full textGavriluţ, Alina, Ioan Mercheş, and Maricel Agop. "Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions." In Atomicity through Fractal Measure Theory, 37–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29593-6_4.
Full textConference papers on the topic "Fractal measure"
Abiyev, Rahib, and Kemal Ihsan Kilic. "An efficient fractal measure for image texture recognition." In 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control (ICSCCW). IEEE, 2009. http://dx.doi.org/10.1109/icsccw.2009.5379454.
Full textAngeline, Peter J. "Results on a fractal measure for evolutionary optimization." In AeroSense 2002, edited by Kevin L. Priddy, Paul E. Keller, and Peter J. Angeline. SPIE, 2002. http://dx.doi.org/10.1117/12.458701.
Full textNEKKA, FAHIMA, and JUN LI. "CHARACTERIZATION OF FRACTAL STRUCTURES THROUGH A HAUSDORFF MEASURE BASED METHOD." In Fractals and Related Phenomena in Nature. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702746_0017.
Full textPodgorelec, V., M. Hericko, and M. B. Juric. "Assessing software complexity from UML using fractal complexity measure." In Second IEEE International Conference on Computational Cybernetics. IEEE, 2004. http://dx.doi.org/10.1109/icccyb.2004.1437717.
Full textKinsner, W., and R. Dansereau. "A Relative Fractal Dimension Spectrum as a Complexity Measure." In 2006 5th IEEE International Conference on Cognitive Informatics. IEEE, 2006. http://dx.doi.org/10.1109/coginf.2006.365697.
Full textde Melo, R. H. C., and A. Conci. "Succolarity: Defining a method to calculate this fractal measure." In 2008 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2008. http://dx.doi.org/10.1109/iwssip.2008.4604424.
Full textLiang, Ying, Qingyang Xiu, and Yunfeng Bi. "Geomagnetic Anomaly Mapping by Multi-fractal Measure Kriging Interpolation Method." In the 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3291801.3291824.
Full textTorre, Davide La, and Edward R. Vrscay. "Fractal-based measure approximation with entropy maximization and sparsity constraints." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2012. http://dx.doi.org/10.1063/1.3703621.
Full textDhok, S. B., R. B. Deshmukh, and A. G. Keskar. "Fast Fractal Encoding through FFT using Modified Crosscorrelation based Similarity Measure." In Annual International Conference on Advances in Distributed and Parallel Computing ADPC 2010. Global Science and Technology Forum, 2010. http://dx.doi.org/10.5176/978-981-08-7656-2atai2010-60.
Full textJayasuriya, Surani Anuradha, and Alan Wee-Chung Liew. "Fractal dimension as a symmetry measure in 3D brain MRI analysis." In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359511.
Full text