Journal articles on the topic 'Fractal measure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fractal measure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mörters, Peter, and David Preiss. "Tangent measure distributions of fractal measures." Mathematische Annalen 312, no. 1 (September 1, 1998): 53–93. http://dx.doi.org/10.1007/s002080050212.
Full textChen, Yanguang. "Fractal Modeling and Fractal Dimension Description of Urban Morphology." Entropy 22, no. 9 (August 30, 2020): 961. http://dx.doi.org/10.3390/e22090961.
Full textKadanoff, Leo P. "Fractal Singularities in a Measure and How to Measure Singularities on a Fractal." Progress of Theoretical Physics Supplement 86 (1986): 383–86. http://dx.doi.org/10.1143/ptps.86.383.
Full textSENGUPTA, KAUSHIK, and K. J. VINOY. "A NEW MEASURE OF LACUNARITY FOR GENERALIZED FRACTALS AND ITS IMPACT IN THE ELECTROMAGNETIC BEHAVIOR OF KOCH DIPOLE ANTENNAS." Fractals 14, no. 04 (December 2006): 271–82. http://dx.doi.org/10.1142/s0218348x06003313.
Full textFalconer, Kenneth J., and Gerald A. Edgar. "Measure, Topology and Fractal Geometry." Mathematical Gazette 75, no. 472 (June 1991): 237. http://dx.doi.org/10.2307/3620293.
Full textNorton, Alec, and Gerald A. Edgar. "Measure, Topology, and Fractal Geometry." American Mathematical Monthly 99, no. 4 (April 1992): 378. http://dx.doi.org/10.2307/2324919.
Full textTan, Teewoon, and Hong Yan. "The fractal neighbor distance measure." Pattern Recognition 35, no. 6 (June 2002): 1371–87. http://dx.doi.org/10.1016/s0031-3203(01)00125-x.
Full textKolb, M. "Harmonic measure for fractal objects." Nuclear Physics B - Proceedings Supplements 5, no. 1 (September 1988): 129–34. http://dx.doi.org/10.1016/0920-5632(88)90027-8.
Full textChen, Yanguang. "Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents." Discrete Dynamics in Nature and Society 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/194715.
Full textSIMMONS, DAVID. "On interpreting Patterson–Sullivan measures of geometrically finite groups as Hausdorff and packing measures." Ergodic Theory and Dynamical Systems 36, no. 8 (July 21, 2015): 2675–86. http://dx.doi.org/10.1017/etds.2015.27.
Full textSoltanifar, Mohsen. "A Generalization of the Hausdorff Dimension Theorem for Deterministic Fractals." Mathematics 9, no. 13 (July 1, 2021): 1546. http://dx.doi.org/10.3390/math9131546.
Full textOliva, A. I., E. Anguiano, and M. Aguilar. "Fractal dimension: measure of coating quality." Surface Engineering 15, no. 2 (April 1999): 101–4. http://dx.doi.org/10.1179/026708499101516344.
Full textMitic, Vojislav, Goran Lazovic, Jelena Manojlovic, Wen-Chieh Huang, Mladen Stojiljkovic, Hans Facht, and Branislav Vlahovic. "Entropy and fractal nature." Thermal Science 24, no. 3 Part B (2020): 2203–12. http://dx.doi.org/10.2298/tsci191007451m.
Full textHu, Xiaoyu, and S. James Taylor. "Fractal properties of products and projections of measures in ℝd." Mathematical Proceedings of the Cambridge Philosophical Society 115, no. 3 (May 1994): 527–44. http://dx.doi.org/10.1017/s0305004100072285.
Full textEl-Nabulsi, Rami Ahmad. "Superconductivity and nucleation from fractal anisotropy and product-like fractal measure." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2249 (May 2021): 20210065. http://dx.doi.org/10.1098/rspa.2021.0065.
Full textOsman, Daniel, David Newitt, Alice Gies, Thomas Budinger, Vu Hao Truong, Sharmila Majumdar, and John Kinney. "Fractal Based Image Analysis of Human Trabecular Bone using the Box Counting Algorithm." Fractals 06, no. 03 (September 1998): 275–83. http://dx.doi.org/10.1142/s0218348x98000328.
Full textPuente, Carlos E., Miguel M. López, Jorge E. Pinzón, and José M. Angulo. "The Gaussian distribution revisited." Advances in Applied Probability 28, no. 02 (June 1996): 500–524. http://dx.doi.org/10.1017/s000186780004859x.
Full textPuente, Carlos E., Miguel M. López, Jorge E. Pinzón, and José M. Angulo. "The Gaussian distribution revisited." Advances in Applied Probability 28, no. 2 (June 1996): 500–524. http://dx.doi.org/10.2307/1428069.
Full textBright, D. S. "Particle-Like Fractal Images for Testing Algorithms that Measure Boundary Fractal Dimension." Microscopy and Microanalysis 8, S02 (August 2002): 1574–75. http://dx.doi.org/10.1017/s1431927602104454.
Full textSOLOMYAK, BORIS. "Measure and dimension for some fractal families." Mathematical Proceedings of the Cambridge Philosophical Society 124, no. 3 (November 1998): 531–46. http://dx.doi.org/10.1017/s0305004198002680.
Full textdos Santos, Leonardo, Alessandra Carvalho, Jair Leão, Paulo Neto, Tatijana Stosic, and Borko Stosic. "Fractal Measure and Microscopic Modeling of Osseointegration." International Journal of Periodontics & Restorative Dentistry 35, no. 6 (November 2015): 851–55. http://dx.doi.org/10.11607/prd.2324.
Full textDREMIN, I. M. "THE FRACTAL CORRELATION MEASURE FOR MULTIPLE PRODUCTION." Modern Physics Letters A 03, no. 14 (October 1988): 1333–35. http://dx.doi.org/10.1142/s0217732388001604.
Full textRAGHAVENDRA, B. S., and D. NARAYANA DUTT. "SIGNAL CHARACTERIZATION USING FRACTAL DIMENSION." Fractals 18, no. 03 (September 2010): 287–92. http://dx.doi.org/10.1142/s0218348x10004968.
Full textWU, JUNRU, and CHENGYUAN WANG. "FRACTAL STOKES’ THEOREM BASED ON INTEGRALS ON FRACTAL MANIFOLDS." Fractals 28, no. 01 (January 23, 2020): 2050010. http://dx.doi.org/10.1142/s0218348x20500103.
Full textHAMBLY, B. M., JUN KIGAMI, and TAKASHI KUMAGAI. "Multifractal formalisms for the local spectral and walk dimensions." Mathematical Proceedings of the Cambridge Philosophical Society 132, no. 3 (May 2002): 555–71. http://dx.doi.org/10.1017/s0305004101005618.
Full textLombardini, Luca. "Fractional Perimeters from a Fractal Perspective." Advanced Nonlinear Studies 19, no. 1 (February 1, 2019): 165–96. http://dx.doi.org/10.1515/ans-2018-2016.
Full textVASS, JÓZSEF. "ON INTERSECTING IFS FRACTALS WITH LINES." Fractals 22, no. 04 (November 12, 2014): 1450014. http://dx.doi.org/10.1142/s0218348x14500145.
Full textPikkujämsä, Sirkku M., Timo H. Mäkikallio, K. E. Juhani Airaksinen, and Heikki V. Huikuri. "Determinants and interindividual variation of R-R interval dynamics in healthy middle-aged subjects." American Journal of Physiology-Heart and Circulatory Physiology 280, no. 3 (March 1, 2001): H1400—H1406. http://dx.doi.org/10.1152/ajpheart.2001.280.3.h1400.
Full textKULISH, Vladimir, and Vladimír HORÁK. "FORECASTING THE BEHAVIOR OF FRACTAL TIME SERIES: HURST EXPONENT AS A MEASURE OF PREDICTABILITY." Review of the Air Force Academy 14, no. 2 (December 8, 2016): 61–68. http://dx.doi.org/10.19062/1842-9238.2016.14.2.8.
Full textEscobar, Marco A., José R. Guzmán Sepúlveda, Jorge R. Parra Michel, and Rafael Guzmán Cabrera. "A proposal to measure the similarity between retinal vessel segmentations images." Nova Scientia 11, no. 22 (May 29, 2019): 224–45. http://dx.doi.org/10.21640/ns.v11i22.1872.
Full textChen, Yanguang. "Two Sets of Simple Formulae to Estimating Fractal Dimension of Irregular Boundaries." Mathematical Problems in Engineering 2020 (February 26, 2020): 1–15. http://dx.doi.org/10.1155/2020/7528703.
Full textWang, Lei, Ya-Nan Bai, Ning Huang, and Qing-Guo Wang. "Fractal-Based Reliability Measure for Heterogeneous Manufacturing Networks." IEEE Transactions on Industrial Informatics 15, no. 12 (December 2019): 6407–14. http://dx.doi.org/10.1109/tii.2019.2901890.
Full textLima, F. F., V. M. Oliveira, and M. A. F. Gomes. "A Galilean experiment to measure a fractal dimension." American Journal of Physics 61, no. 5 (May 1993): 421–22. http://dx.doi.org/10.1119/1.17234.
Full textKumar, Sanjeev, Amod Kumar, Anjan Trikha, Sneh Anand, and Prashanth Gantla. "Higuchi fractal dimension as a measure of analgesia." International Journal of Medical Engineering and Informatics 4, no. 1 (2012): 66. http://dx.doi.org/10.1504/ijmei.2012.045304.
Full textLa Torre, Davide, and Edward R. Vrscay. "A generalized fractal transform for measure-valued images." Nonlinear Analysis: Theory, Methods & Applications 71, no. 12 (December 2009): e1598-e1607. http://dx.doi.org/10.1016/j.na.2009.01.239.
Full textWANG, Ming-Hua. "The Hausdorff measure of a Sierpinski-like fractal." Hokkaido Mathematical Journal 36, no. 1 (February 2007): 9–19. http://dx.doi.org/10.14492/hokmj/1285766665.
Full textDevaney, Robert L. "Measure, Topology, and Fractal Geometry (Gerald A. Edgar)." SIAM Review 33, no. 4 (December 1991): 668–69. http://dx.doi.org/10.1137/1033153.
Full textOndřej, Zindulka. "Strong measure zero and meager-additive sets through the prism of fractal measures." Commentationes Mathematicae Universitatis Carolinae 60, no. 1 (July 8, 2019): 131–55. http://dx.doi.org/10.14712/1213-7243.2015.277.
Full textYeragani, V. K., K. Srinivasan, S. Vempati, R. Pohl, and R. Balon. "Fractal dimension of heart rate time series: an effective measure of autonomic function." Journal of Applied Physiology 75, no. 6 (December 1, 1993): 2429–38. http://dx.doi.org/10.1152/jappl.1993.75.6.2429.
Full textPARAMANATHAN, P., and R. UTHAYAKUMAR. "SIZE MEASURE RELATIONSHIP METHOD FOR FRACTAL ANALYSIS OF SIGNALS." Fractals 16, no. 03 (September 2008): 235–41. http://dx.doi.org/10.1142/s0218348x08003995.
Full textMcNamee, J. E. "Fractal perspectives in pulmonary physiology." Journal of Applied Physiology 71, no. 1 (July 1, 1991): 1–8. http://dx.doi.org/10.1152/jappl.1991.71.1.1.
Full textYu, Kanhua, Jian Gong, Yan Jing, Shuqian Liu, and Shihao Liang. "The Use of Fractal Theory Methods to Measure Growth Boundary, Planning and Control of Qinling and Bashan Mountainous Regions." Open House International 42, no. 3 (September 1, 2017): 116–19. http://dx.doi.org/10.1108/ohi-03-2017-b0024.
Full textMeakin, Paul. "Scaling properties for the growth probability measure and harmonic measure of fractal structures." Physical Review A 35, no. 5 (March 1, 1987): 2234–45. http://dx.doi.org/10.1103/physreva.35.2234.
Full textLubkin, Sharon R., Sarah E. Funk, and E. Helene Sage. "Quantifying Vasculature: New Measures Applied to Arterial Trees in the Quail Chorioallantoic Membrane." Journal of Theoretical Medicine 6, no. 3 (2005): 173–80. http://dx.doi.org/10.1080/10273660500264684.
Full textLi, Jun, and Martin Ostoja-Starzewski. "Fractal solids, product measures and fractional wave equations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2108 (June 4, 2009): 2521–36. http://dx.doi.org/10.1098/rspa.2009.0101.
Full textBOYARSKY, A., and Y. S. LOU. "A MATRIX METHOD FOR APPROXIMATING FRACTAL MEASURES." International Journal of Bifurcation and Chaos 02, no. 01 (March 1992): 167–75. http://dx.doi.org/10.1142/s021812749200015x.
Full textZähle, U. "The Fractal Character of Localizable Measure-Valued Processes, III. Fractal Carrying Sets of Branching Diffusions." Mathematische Nachrichten 138, no. 1 (1988): 293–311. http://dx.doi.org/10.1002/mana.19881380121.
Full textZähle, U. "The Fractal Character of Localizable Measure-Valued Processes. I — Random Measures on Product Spaces." Mathematische Nachrichten 136, no. 1 (1988): 149–55. http://dx.doi.org/10.1002/mana.19881360110.
Full textRAUT, SANTANU, and DHURJATI PRASAD DATTA. "ANALYSIS ON A FRACTAL SET." Fractals 17, no. 01 (March 2009): 45–52. http://dx.doi.org/10.1142/s0218348x09004156.
Full textKo, Ker-I. "On the computability of fractal dimensions and Hausdorff measure." Annals of Pure and Applied Logic 93, no. 1-3 (April 1998): 195–216. http://dx.doi.org/10.1016/s0168-0072(97)00060-2.
Full text