Academic literature on the topic 'Fractal Squares'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractal Squares.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractal Squares"
ZHANG, YAN-FANG. "A LOWER BOUND OF TOPOLOGICAL HAUSDORFF DIMENSION OF FRACTAL SQUARES." Fractals 28, no. 06 (September 2020): 2050115. http://dx.doi.org/10.1142/s0218348x20501157.
Full textLAU, KA–SING, JUN JASON LUO, and HUI RAO. "Topological structure of fractal squares." Mathematical Proceedings of the Cambridge Philosophical Society 155, no. 1 (March 1, 2013): 73–86. http://dx.doi.org/10.1017/s0305004112000692.
Full textLiang, Zhen, and Huo-Jun Ruan. "Gap sequences of fractal squares." Journal of Mathematical Analysis and Applications 472, no. 2 (April 2019): 1475–86. http://dx.doi.org/10.1016/j.jmaa.2018.12.003.
Full textRAO, FENG, XIAOHUA WANG, and SHENGYOU WEN. "ON THE TOPOLOGICAL CLASSIFICATION OF FRACTAL SQUARES." Fractals 25, no. 03 (May 11, 2017): 1750028. http://dx.doi.org/10.1142/s0218348x17500281.
Full textLUO, JUN JASON, and JING-CHENG LIU. "ON THE CLASSIFICATION OF FRACTAL SQUARES." Fractals 24, no. 01 (March 2016): 1650008. http://dx.doi.org/10.1142/s0218348x16500080.
Full textXiao, Jian-Ci. "Fractal squares with finitely many connected components *." Nonlinearity 34, no. 4 (February 18, 2021): 1817–36. http://dx.doi.org/10.1088/1361-6544/abd611.
Full textFeng, Rao, Wang Xiaohua, and Zhu Yunjie. "Lipschitz equivalence of a pair of fractal squares." SCIENTIA SINICA Mathematica 48, no. 3 (May 24, 2017): 363. http://dx.doi.org/10.1360/n012016-00180.
Full textRuan, Huo-Jun, and Yang Wang. "Topological invariants and Lipschitz equivalence of fractal squares." Journal of Mathematical Analysis and Applications 451, no. 1 (July 2017): 327–44. http://dx.doi.org/10.1016/j.jmaa.2017.02.012.
Full textRezende, Veridiana, Mariana Moran, Thais Michele Mártires, and Fabricia Carvalho Paixão. "O Fractal Árvore Pitagórica e Diferentes Representações: uma Investigação com Alunos do Ensino Médio." Jornal Internacional de Estudos em Educação Matemática 11, no. 2 (September 11, 2018): 160. http://dx.doi.org/10.17921/2176-5634.2018v11n2p160-171.
Full textPALAGALLO, JUDITH, and MARIA SALCEDO. "SYMMETRIES OF FRACTAL TILINGS." Fractals 16, no. 01 (March 2008): 69–78. http://dx.doi.org/10.1142/s0218348x08003806.
Full textDissertations / Theses on the topic "Fractal Squares"
Roinestad, Kristine A. "Geometry of Fractal Squares." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/26883.
Full textPh. D.
Omilion, Alexis Kathleen. "The Effect of Multiple Scales on Fractal-Grid-Generated Turbulence." Cleveland State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=csu1528635554940034.
Full textPrehl, geb Balg Janett. "Diffusion on Fractals." Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Full textIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Wu, I.-lin, and 吳易霖. "A Study on Particle Swarm Optimization based Resistant Fractal Image Compression using Least Trimmed Squares." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/91232641875182701078.
Full text義守大學
資訊工程學系碩士班
97
Fractal image compression (FIC) is a lossy coding scheme. It possesses the advantages of high quality of retrieved image, zoom invariant, and high compression ratio. It is used for many applications recently in the filed of image reconstruction, watermark, medical image, feature recognition, and so on. However, if a corrupted image is encoded by FIC, the quality of retrieved image will be poor. Self-similarity and partitioned iterated function system are the underlying idea of FIC. Practically, we find the similarity between range blocks and domain blocks in the encoding process of FIC. The scheme of least squares is used to calculate contrast and brightness between a range block and a domain block in the conventional FIC. The least squares estimator is the best linear unbiased estimator under assumptions that the random variable is zero-mean, constant variance, and uncorrected random variable. As is well known in regression theory that linear regressor is sensitive to outliers. That’s reason why the quality of retrieved image will be poor. Robust regression is usually used against noises in regression theory. Least trimmed squares (LTS) method with resistance from the robust regression is proposed in this thesis. It is embedded into the encoding procedure of the FIC. Recursive weighted least squares with simple architecture and fast convergence is used in this thesis. To effectively improve the encoding speed, particle swarm optimization (PSO) is utilized to reduce the search space.
Prehl, geb Balg Janett. "Diffusion on Fractals." Master's thesis, 2006. https://monarch.qucosa.de/id/qucosa%3A18745.
Full textIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat
Mahfouth, Altayeb. "Fractal grid-turbulence and its effects on a performance of a model of a hydrokinetic turbine." Thesis, 2016. http://hdl.handle.net/1828/7728.
Full textGraduate
Books on the topic "Fractal Squares"
Nagarajan, Vijaya. Embodied Mathematics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780195170825.003.0007.
Full textFIGURING IT OUT: Entertaining Encounters with Everyday Maths. New York, USA: SPRINGER, 2010.
Find full textBook chapters on the topic "Fractal Squares"
Dudbridge, F. "Least-Squares Block Coding by Fractal Functions." In Fractal Image Compression, 229–41. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2472-3_12.
Full textMandelbrot, Benoit B. "The inexhaustible function z squared plus c." In Fractals and Chaos, 259–67. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4017-2_23.
Full textMandelbrot, Benoit B. "Cantor and Fatou dusts; self-squared dragons." In Fractals and Chaos, 52–72. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4017-2_4.
Full textMandelbrot, Benoit B. "Bifurcation points and the “n-squared” approximation and conjecture, illustrated by M.L Frame and K Mitchell." In Fractals and Chaos, 96–99. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4017-2_6.
Full textPopescu, Dan C., Alex Dimca, and Hong Yan. "Generalized square isometries — an improvement for fractal image coding." In Image Analysis and Processing, 637–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60298-4_325.
Full textJumarie, Guy. "Quantum Entropies of Non-Probabilistic Square Matrices." In Maximum Entropy, Information Without Probability and Complex Fractals, 83–128. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9496-7_5.
Full textUpmanu, Vishal, Ajay Kumar Yadav, Nitin Kathuria, and Pradyot Kala. "RIS-Based Multiband Microstrip Patch Antenna Using Square and Giuseppe Peano Fractals." In Lecture Notes in Electrical Engineering, 121–31. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0665-5_10.
Full textJeanneret, B., Ph Flückiger, R. Meyer, J. L. Gavilano, Ch Leemann, and P. Martinoli. "Influence of Phase Fluctuations in Dynamical Magnetoconductance Measurements of Both Square and Fractal Wire Networks." In Science and Technology of Thin Film Superconductors 2, 481. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-1345-8_70.
Full textJones, William J. "Skew Squares." In The Pattern Book: Fractals, Art, and Nature, 268. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812832061_0104.
Full textSzyszkowicz, Mieczyslaw. "Patterns Composed with Squares." In The Pattern Book: Fractals, Art, and Nature, 362–64. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812832061_0139.
Full textConference papers on the topic "Fractal Squares"
Ambika, P. S., P. K. Rajendrakumar, and Rijil Ramchand. "An Approach to Rolling Bearing Fault Diagnosis using Fractal Descriptors and Regularized Least Squares." In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). IEEE, 2019. http://dx.doi.org/10.1109/icaccp.2019.8882984.
Full textDehkhoda, P., and A. Tavakoli. "A crown square microstrip fractal antenna." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1331855.
Full textWang Yong and Liu Shaobin. "A New Modified Crown Square Fractal Antenna." In 2008 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2008. http://dx.doi.org/10.1109/icmmt.2008.4540400.
Full textBukkawar, Sheetal, and Vasif Ahmed. "Square Shaped Fractal Antenna for Multiband Applications." In 2018 International Conference on Smart City and Emerging Technology (ICSCET). IEEE, 2018. http://dx.doi.org/10.1109/icscet.2018.8537305.
Full textElkamchouchi, H. M., and M. N. Abd El-Salam. "Square loop antenna miniaturization using fractal geometry." In Proceedings of the Twentieth National Radio Science Conference (NRSC'2003). IEEE, 2003. http://dx.doi.org/10.1109/nrsc.2003.157313.
Full textChhabra, Avinashi, Chahat Jain, and Saroop Singh. "Analysis of square slotted fractal antenna on a square slotted metasurface." In 2017 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2017. http://dx.doi.org/10.1109/ccaa.2017.8230022.
Full textSafia, Ousama Abu, and Mourad Nedil. "Ultra-broadband V-band fractal T-square antenna." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8073348.
Full textAslan, Ekin, Semih Korkmaz, Sabri Kaya, and Mustafa Turkmen. "Rotated First Iteration Square Fractal Shaped Perfect Absorbers." In Optical Sensors. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/sensors.2015.sew1b.6.
Full textWang, Li-na, Shu Lin, Run-nan Cai, Guan-long Huang, and Wen-bin Zhang. "Multiband printed monopole antenna with square-nested fractal." In 2011 6th International ICST Conference on Communications and Networking in China (CHINACOM). IEEE, 2011. http://dx.doi.org/10.1109/chinacom.2011.6158289.
Full textKaur, Rupleen, Sahil Saini, Satbir Singh, and Naveen Kumar. "A multiband fractal square patch antenna for aerospace navigation." In 2015 Annual IEEE India Conference (INDICON). IEEE, 2015. http://dx.doi.org/10.1109/indicon.2015.7443235.
Full textReports on the topic "Fractal Squares"
Gureghian, A. B. FRACVAL: Validation (nonlinear least squares method) of the solution of one-dimensional transport of decaying species in a discrete planar fracture with rock matrix diffusion. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6468991.
Full text