Academic literature on the topic 'Fractals Mandelbrot sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractals Mandelbrot sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractals Mandelbrot sets"
Abbas, Mujahid, Hira Iqbal, and Manuel De la Sen. "Generation of Julia and Mandelbrot Sets via Fixed Points." Symmetry 12, no. 1 (January 2, 2020): 86. http://dx.doi.org/10.3390/sym12010086.
Full textZhou, Hao, Muhammad Tanveer, and Jingjng Li. "Comparative Study of Some Fixed-Point Methods in the Generation of Julia and Mandelbrot Sets." Journal of Mathematics 2020 (July 20, 2020): 1–15. http://dx.doi.org/10.1155/2020/7020921.
Full textKang, Shinmin, Arif Rafiq, Abdul Latif, Abdul Shahid, and Faisal Alif. "Fractals through modified iteration scheme." Filomat 30, no. 11 (2016): 3033–46. http://dx.doi.org/10.2298/fil1611033k.
Full textWANG, XING-YUAN, QING-YONG LIANG, and JUAN MENG. "CHAOS AND FRACTALS IN C–K MAP." International Journal of Modern Physics C 19, no. 09 (September 2008): 1389–409. http://dx.doi.org/10.1142/s0129183108012935.
Full textЖихарев and L. Zhikharev. "Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I." Geometry & Graphics 3, no. 3 (November 30, 2015): 24–37. http://dx.doi.org/10.12737/14417.
Full textMARTINEAU, ÉTIENNE, and DOMINIC ROCHON. "ON A BICOMPLEX DISTANCE ESTIMATION FOR THE TETRABROT." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 3039–50. http://dx.doi.org/10.1142/s0218127405013873.
Full textRani, Mamta, and Sanjeev Kumar Prasad. "Superior Cantor Sets and Superior Devil Staircases." International Journal of Artificial Life Research 1, no. 1 (January 2010): 78–84. http://dx.doi.org/10.4018/jalr.2010102106.
Full textJONES, MARK P. "FUNCTIONAL PEARL Composing fractals." Journal of Functional Programming 14, no. 6 (October 27, 2004): 715–25. http://dx.doi.org/10.1017/s0956796804005167.
Full textKang, Shin Min, Waqas Nazeer, Muhmmad Tanveer, and Abdul Aziz Shahid. "New Fixed Point Results for Fractal Generation in Jungck Noor Orbit withs-Convexity." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/963016.
Full textGALEEVA, R., and A. VERJOVSKY. "QUATERNION DYNAMICS AND FRACTALS IN ℝ4." International Journal of Bifurcation and Chaos 09, no. 09 (September 1999): 1771–75. http://dx.doi.org/10.1142/s0218127499001255.
Full textDissertations / Theses on the topic "Fractals Mandelbrot sets"
Tolmie, Julie. "Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1." View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20020313.101505/index.html.
Full textReis, Márcio Vaiz dos. "Conjunto de Mandelbrot." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6343.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-10-04T10:46:49Z (GMT) No. of bitstreams: 2 Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-10-04T10:46:49Z (GMT). No. of bitstreams: 2 Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-08-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The purpose of this dissertation is to present an introductory approach to the complex dynamics and fractal geometry, especially the Mandelbrot set. With the goal to simplify and stimulate the introduction of complex number in high school, the approach adopted was: the definition of the Mandelbrot set and its characteristics; the relationship between the Mandelbrot set and Julia set; how to find by using the Mandelbrot set. One of the tools used to help the teaching was Geogeobra, a dynamic software that allows the student to build the Mandelbrot set. Through this study, it is expected to motivate the learning of complex numbers by using fractal obtained by the study of function ( ) . Obtaining, as a result, a differentiated and motivating way of learning for a better understanding and intellectual development of the students.
Esse trabalho apresenta uma abordagem introdutória para a dinâmica complexa e a geometria fractal, em especial o conjunto de Mandelbrot. Com objetivo de facilitar e motivar a interação dos alunos com o ensino dos números complexos, a abordagem adotada foi: a definição do conjunto de Mandelbrot e suas características; a relação entre o conjunto de Mandelbrot e o conjunto de Julia; a relação do conjunto de Mandelbrot e o número . Uma das ferramentas utilizadas para auxiliar o professor foi o Geogeobra, um software dinâmico que permite o aluno a construção do conjunto de Mandelbrot. Por meio deste trabalho, espera-se motivar o ensino dos números complexos através do fractal obtido pelo estudo da função ( ) . Obtendo assim, como resultado, uma forma diferenciada e motivadora do aprendizado do aluno, garantindo um melhor entendimento e desenvolvimento intelectual.
Hannah, Walter. "Internal rays of the Mandelbrot set." Thesis, 2006. http://www.ithaca.edu/hs/depts/math/docs/theses/whannahthesis.pdf.
Full textWheeler, Jodi Lynette. "Fractals : an exploration into the dimensions of curves and sufaces." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-3825.
Full texttext
Silvestri, Stefano. "The Dynamics of Semigroups of Contraction Similarities on the Plane." Thesis, 2019. http://hdl.handle.net/1805/19909.
Full textGiven a parametrized family of Iterated Function System (IFS) we give sufficient conditions for a parameter on the boundary of the connectedness locus, M, to be accessible from the complement of M. Moreover, we provide a few examples of such parameters and describe how they are connected to Misiurewicz parameter in the Mandelbrot set, i.e. the connectedness locus of the quadratic family z^2+c.
(6983546), Stefano Silvestri. "The Dynamics of Semigroups of Contraction Similarities on the Plane." Thesis, 2019.
Find full textBooks on the topic "Fractals Mandelbrot sets"
Lesmoir-Gordon, Nigel. The colours of infinity: The beauty and power of fractals. London: Springer Verlag, 2010.
Find full textMandelbrot, Benoit B. Fractals and chaos: The Mandelbrot set and beyond. New York, NY: Springer, 2004.
Find full text1945-, Kauffman Louis H., and Sandin Daniel J, eds. Hypercomplex iterations: Distance estimation and higher dimensional fractals. River Edge, NJ: World Scientific, 2002.
Find full textConference Board of the Mathematical Sciences and National Science Foundation (U.S.), eds. Ergodic theory and fractal geometry. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2014.
Find full textMandelbrot, Benoit B. Fractals and Chaos: The Mandelbrot Set and Beyond. Springer, 2004.
Find full text1945-, Stewart Ian, and Clarke Arthur Charles 1917-, eds. The colours of infinity: The beauty and power of fractals. [S.l.]: Clear Books, 2004.
Find full textAlt.Fractals: A visual guide to fractal geometry and design. Brighton, Uk: Chocolate Tree Books, 2011.
Find full textBook chapters on the topic "Fractals Mandelbrot sets"
Reeve, Dominic E. "Mandelbrot, Julia Sets and Nonlinear Mappings." In Fractals and Chaos, 35–42. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3034-2_3.
Full textDouady, Adrien. "Julia Sets and the Mandelbrot Set." In The Beauty of Fractals, 161–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61717-1_13.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Chaos and Fractals, 783–837. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21823-8_15.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Chaos and Fractals, 841–901. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4740-9_15.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Fractals for the Classroom, 415–73. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4406-6_8.
Full textBoussoufi, Ouahiba, Kaoutar Lamrini Uahabi, and Mohamed Atounti. "Using Fractal Dimension to Check Similarity Between Mandelbrot and Julia Sets in Misiurewicz Points." In Advances in Intelligent Systems and Computing, 558–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11928-7_50.
Full textBARNSLEY, MICHAEL F. "Parameter Spaces and Mandelbrot Sets." In Fractals Everywhere, 294–329. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-079061-6.50013-9.
Full textFalconer, Kenneth J. "4. Julia sets and the Mandelbrot set." In Fractals, 61–84. Oxford University Press, 2013. http://dx.doi.org/10.1093/actrade/9780199675982.003.0004.
Full text"Complex Fractals : Julia Sets and the Mandelbrot Set." In Encounters with Chaos and Fractals, 327–59. Chapman and Hall/CRC, 2012. http://dx.doi.org/10.1201/b11855-11.
Full textCalahan, S. Dean, and Jim Flanagan. "Self-Mapping of Mandelbrot Sets by Preiteration." In The Pattern Book: Fractals, Art, and Nature, 166–68. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812832061_0066.
Full textConference papers on the topic "Fractals Mandelbrot sets"
Dejun, Yan, Yang Rijing, Xin Huijie, and Zheng Jiangchao. "Generalized Mandelbrot Sets and Julia Sets for Non-analytic Complex Maps." In 2010 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2010. http://dx.doi.org/10.1109/iwcfta.2010.42.
Full textYan, Dejun, Junxing Zhang, Nan Jiang, and Lidong Wang. "General Mandelbrot Sets and Julia Sets Generated from Non-analytic Complex Iteration ⨍m(z)=z^n+c." In 2009 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwcfta.2009.89.
Full textShahinpoor, Mohsen. "An Introduction to Smart Fractal Structures and Mechanisms." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0160.
Full textYan, Dejun, Xiaodan Wei, Hongpeng Zhang, Nan Jiang, and Xiangdong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated From Complex Non-Analytic Iteration Fm(Z)=Zm+c." In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/isccca.2013.42.
Full textMichopoulos, John G., and Athanasios Iliopoulos. "High Dimensional Full Inverse Characterization of Fractal Volumes." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71050.
Full textDawkins, Jeremy J., David M. Bevly, and Robert L. Jackson. "Multiscale Terrain Characterization Using Fourier and Wavelet Transforms for Unmanned Ground Vehicles." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2718.
Full textMichopoulos, John G., and Athanasios Iliopoulos. "Complete High Dimensional Inverse Characterization of Fractal Surfaces." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47784.
Full text