Journal articles on the topic 'Fractals Mandelbrot sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 journal articles for your research on the topic 'Fractals Mandelbrot sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Abbas, Mujahid, Hira Iqbal, and Manuel De la Sen. "Generation of Julia and Mandelbrot Sets via Fixed Points." Symmetry 12, no. 1 (January 2, 2020): 86. http://dx.doi.org/10.3390/sym12010086.
Full textZhou, Hao, Muhammad Tanveer, and Jingjng Li. "Comparative Study of Some Fixed-Point Methods in the Generation of Julia and Mandelbrot Sets." Journal of Mathematics 2020 (July 20, 2020): 1–15. http://dx.doi.org/10.1155/2020/7020921.
Full textKang, Shinmin, Arif Rafiq, Abdul Latif, Abdul Shahid, and Faisal Alif. "Fractals through modified iteration scheme." Filomat 30, no. 11 (2016): 3033–46. http://dx.doi.org/10.2298/fil1611033k.
Full textWANG, XING-YUAN, QING-YONG LIANG, and JUAN MENG. "CHAOS AND FRACTALS IN C–K MAP." International Journal of Modern Physics C 19, no. 09 (September 2008): 1389–409. http://dx.doi.org/10.1142/s0129183108012935.
Full textЖихарев and L. Zhikharev. "Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I." Geometry & Graphics 3, no. 3 (November 30, 2015): 24–37. http://dx.doi.org/10.12737/14417.
Full textMARTINEAU, ÉTIENNE, and DOMINIC ROCHON. "ON A BICOMPLEX DISTANCE ESTIMATION FOR THE TETRABROT." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 3039–50. http://dx.doi.org/10.1142/s0218127405013873.
Full textRani, Mamta, and Sanjeev Kumar Prasad. "Superior Cantor Sets and Superior Devil Staircases." International Journal of Artificial Life Research 1, no. 1 (January 2010): 78–84. http://dx.doi.org/10.4018/jalr.2010102106.
Full textJONES, MARK P. "FUNCTIONAL PEARL Composing fractals." Journal of Functional Programming 14, no. 6 (October 27, 2004): 715–25. http://dx.doi.org/10.1017/s0956796804005167.
Full textKang, Shin Min, Waqas Nazeer, Muhmmad Tanveer, and Abdul Aziz Shahid. "New Fixed Point Results for Fractal Generation in Jungck Noor Orbit withs-Convexity." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/963016.
Full textGALEEVA, R., and A. VERJOVSKY. "QUATERNION DYNAMICS AND FRACTALS IN ℝ4." International Journal of Bifurcation and Chaos 09, no. 09 (September 1999): 1771–75. http://dx.doi.org/10.1142/s0218127499001255.
Full textChen, Zhihua, Muhammad Tanveer, Waqas Nazeer, and Jing Wu. "Fractals via Generalized Jungck–S Iterative Scheme." Discrete Dynamics in Nature and Society 2021 (March 1, 2021): 1–12. http://dx.doi.org/10.1155/2021/8886056.
Full textShahid, Abdul Aziz, Waqas Nazeer, and Krzysztof Gdawiec. "The Picard–Mann iteration with s-convexity in the generation of Mandelbrot and Julia sets." Monatshefte für Mathematik 195, no. 4 (July 1, 2021): 565–84. http://dx.doi.org/10.1007/s00605-021-01591-z.
Full textFRASER, JONATHAN M., JUN JIE MIAO, and SASCHA TROSCHEIT. "The Assouad dimension of randomly generated fractals." Ergodic Theory and Dynamical Systems 38, no. 3 (September 22, 2016): 982–1011. http://dx.doi.org/10.1017/etds.2016.64.
Full textMork, L. K., Keith Sullivan, and Darin J. Ulness. "Lacunary Möbius Fractals on the Unit Disk." Symmetry 13, no. 1 (January 6, 2021): 91. http://dx.doi.org/10.3390/sym13010091.
Full textRAMS, MICHAŁ, and KÁROLY SIMON. "Projections of fractal percolations." Ergodic Theory and Dynamical Systems 35, no. 2 (September 11, 2013): 530–45. http://dx.doi.org/10.1017/etds.2013.45.
Full textGARANT–PELLETIER, V., and D. ROCHON. "ON A GENERALIZED FATOU–JULIA THEOREM IN MULTICOMPLEX SPACES." Fractals 17, no. 03 (September 2009): 241–55. http://dx.doi.org/10.1142/s0218348x09004326.
Full textЖихарев, Л., and L. Zhikharev. "Fractal Dimensionalities." Geometry & Graphics 6, no. 3 (November 14, 2018): 33–48. http://dx.doi.org/10.12737/article_5bc45918192362.77856682.
Full textZhang, Yi, and Da Wang. "Fractals Parrondo’s Paradox in Alternated Superior Complex System." Fractal and Fractional 5, no. 2 (April 28, 2021): 39. http://dx.doi.org/10.3390/fractalfract5020039.
Full textFERNÁNDEZ-GUASTI, M. "FRACTALS WITH HYPERBOLIC SCATORS IN 1 + 2 DIMENSIONS." Fractals 23, no. 02 (May 28, 2015): 1550004. http://dx.doi.org/10.1142/s0218348x15500048.
Full textSallow, Amira Bibo. "Implementation and Analysis of Fractals Shapes using GPU-CUDA Model." Academic Journal of Nawroz University 10, no. 2 (April 28, 2021): 1. http://dx.doi.org/10.25007/ajnu.v10n2a1030.
Full textKlein, Moshe, and Oded Maimon. "The Dynamics in the Soft Numbers Coordinate System." JOURNAL OF ADVANCES IN MATHEMATICS 18 (January 4, 2020): 1–17. http://dx.doi.org/10.24297/jam.v18i.8531.
Full textMohanty, S., and S. N. Nayak. "Fractal Geometry of Helicity Amplitude." Fractals 05, no. 02 (June 1997): 229–35. http://dx.doi.org/10.1142/s0218348x9700022x.
Full textCai, Zong Wen, and Artde D. Kin Tak Lam. "A Study on Mandelbrot Sets to Generate Visual Aesthetic Fractal Patterns." Applied Mechanics and Materials 311 (February 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.311.111.
Full textSHIAH, AICHYUN, KIM-KHOON ONG, and ZDZISLAW E. MUSIELAK. "FRACTAL IMAGES OF GENERALIZED MANDELBROT SETS." Fractals 02, no. 01 (March 1994): 111–21. http://dx.doi.org/10.1142/s0218348x94000107.
Full textJha, Ketan, and Mamta Rani. "Estimation of Dynamic Noise in Mandelbrot Map." International Journal of Artificial Life Research 7, no. 2 (July 2017): 1–20. http://dx.doi.org/10.4018/ijalr.2017070101.
Full textBandt, Christoph, and Nguyen Viet Hung. "Fractaln-gons and their Mandelbrot sets." Nonlinearity 21, no. 11 (October 10, 2008): 2653–70. http://dx.doi.org/10.1088/0951-7715/21/11/009.
Full textOjha, D. B., Ms Shree, A. Dwivedi, and A. Mishra. "An approach for Embedding Elliptic Curve in Fractal Based Digital Signature Scheme." Journal of Scientific Research 3, no. 1 (December 19, 2010): 75. http://dx.doi.org/10.3329/jsr.v3i1.4694.
Full textMork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.
Full textYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang, and Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c." Applied Mechanics and Materials 347-350 (August 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Full textBUCHANAN, WALTER, JAGANNATHAN GOMATAM, and BONNIE STEVES. "GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS." International Journal of Bifurcation and Chaos 12, no. 08 (August 2002): 1755–77. http://dx.doi.org/10.1142/s0218127402005443.
Full textBlankers, Vance, Tristan Rendfrey, Aaron Shukert, and Patrick Shipman. "Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers." Fractal and Fractional 3, no. 1 (February 20, 2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.
Full textWANG, XING-YUAN, and LI-NA GU. "RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS." Fractals 16, no. 01 (March 2008): 79–88. http://dx.doi.org/10.1142/s0218348x08003764.
Full textCheng, Chia-Chin, and Sy-Sang Liaw. "Similarity between the Dynamic and Parameter Spaces in Cubic Mappings." Fractals 06, no. 03 (September 1998): 293–99. http://dx.doi.org/10.1142/s0218348x98000341.
Full textTroscheit, Sascha. "The quasi-Assouad dimension of stochastically self-similar sets." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 1 (January 24, 2019): 261–75. http://dx.doi.org/10.1017/prm.2018.112.
Full textAhmad Alia, Mohammad, and Azman Bin Samsudin. "A New Digital Signature Scheme Based on Mandelbrot and Julia Fractal Sets." American Journal of Applied Sciences 4, no. 11 (November 1, 2007): 848–56. http://dx.doi.org/10.3844/ajassp.2007.848.856.
Full textWANG, XINGYUAN, and CHAO LUO. "BIFURCATION AND FRACTAL OF THE COUPLED LOGISTIC MAP." International Journal of Modern Physics B 22, no. 24 (September 30, 2008): 4275–90. http://dx.doi.org/10.1142/s0217979208038971.
Full textPIACQUADIO, M., and E. CESARATTO. "MULTIFRACTAL SPECTRUM AND THERMODYNAMICAL FORMALISM OF THE FAREY TREE." International Journal of Bifurcation and Chaos 11, no. 05 (May 2001): 1331–58. http://dx.doi.org/10.1142/s0218127401002754.
Full textWANG, XINGYUAN, WEI LIU, and XUEJING YU. "RESEARCH ON BROWNIAN MOVEMENT BASED ON GENERALIZED MANDELBROT–JULIA SETS FROM A CLASS COMPLEX MAPPING SYSTEM." Modern Physics Letters B 21, no. 20 (August 30, 2007): 1321–41. http://dx.doi.org/10.1142/s0217984907013560.
Full textTABORDA, J. A., F. ANGULO, and G. OLIVAR. "MANDELBROT-LIKE BIFURCATION STRUCTURES IN CHAOS BAND SCENARIO OF SWITCHED CONVERTER WITH DELAYED-PWM CONTROL." International Journal of Bifurcation and Chaos 20, no. 01 (January 2010): 99–119. http://dx.doi.org/10.1142/s0218127410025430.
Full textOrtega, Alfonso, Marina de la Cruz, and Manuel Alfonseca. "Parametric 2-dimensional L systems and recursive fractal images: Mandelbrot set, Julia sets and biomorphs." Computers & Graphics 26, no. 1 (February 2002): 143–49. http://dx.doi.org/10.1016/s0097-8493(01)00162-5.
Full textHIMEKI, YUTARO, and YUTAKA ISHII. "is regular-closed." Ergodic Theory and Dynamical Systems 40, no. 1 (April 10, 2018): 213–20. http://dx.doi.org/10.1017/etds.2018.27.
Full textAlia, Mohammad, and Khaled Suwais. "Improved Steganography Scheme based on Fractal Set." International Arab Journal of Information Technology 17, no. 1 (January 1, 2019): 128–36. http://dx.doi.org/10.34028/iajit/17/1/15.
Full textLiu, Zhifeng, Tao Zhang, Yongsheng Zhao, and Shuxin Bi. "Time-varying stiffness model of spur gear considering the effect of surface morphology characteristics." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233, no. 2 (May 12, 2018): 242–53. http://dx.doi.org/10.1177/0954408918775955.
Full textBOUNIAS, M., and A. BONALY. "TOPOLOGICAL AND NONLINEAR PROPERTIES OF LIGAND-RECEPTOR SYSTEMS." Journal of Biological Systems 04, no. 03 (September 1996): 315–52. http://dx.doi.org/10.1142/s0218339096000235.
Full textRama, Bulusu, and Jibitesh Mishra. "Generation of 3D Fractal Images for Mandelbrot and Julia Sets." International Journal of Computer and Communication Technology, January 2011, 14–18. http://dx.doi.org/10.47893/ijcct.2011.1064.
Full text