Academic literature on the topic 'Fractional calculus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractional calculus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractional calculus"
Feng, Xiaobing, and Mitchell Sutton. "A new theory of fractional differential calculus." Analysis and Applications 19, no. 04 (February 20, 2021): 715–50. http://dx.doi.org/10.1142/s0219530521500019.
Full textBaleanu, Dumitru. "About Fractional Calculus of Singular Lagrangians." Journal of Advanced Computational Intelligence and Intelligent Informatics 9, no. 4 (July 20, 2005): 395–98. http://dx.doi.org/10.20965/jaciii.2005.p0395.
Full textZhao, Yan Chun. "Design and Application of Digital Filter Based on Calculus Computing Concept." Applied Mechanics and Materials 513-517 (February 2014): 3151–55. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3151.
Full textSabzikar, Farzad, Mark M. Meerschaert, and Jinghua Chen. "Tempered fractional calculus." Journal of Computational Physics 293 (July 2015): 14–28. http://dx.doi.org/10.1016/j.jcp.2014.04.024.
Full textLubich, Ch. "Discretized Fractional Calculus." SIAM Journal on Mathematical Analysis 17, no. 3 (May 1986): 704–19. http://dx.doi.org/10.1137/0517050.
Full textTarasov, Vasily E. "Lattice fractional calculus." Applied Mathematics and Computation 257 (April 2015): 12–33. http://dx.doi.org/10.1016/j.amc.2014.11.033.
Full textCont, Rama, and Ruhong Jin. "Fractional Ito calculus." Transactions of the American Mathematical Society, Series B 11, no. 22 (March 27, 2024): 727–61. http://dx.doi.org/10.1090/btran/185.
Full textMishura, Yuliya, Olha Hopkalo, and Hanna Zhelezniak. "Elements of fractional calculus. Fractional integrals." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 1 (2022): 11–19. http://dx.doi.org/10.17721/1812-5409.2022/1.1.
Full textMedina, Gustavo D., Nelson R. Ojeda, Jose H. Pereira, and Luis G. Romero. "Fractional Laplace transform and fractional calculus." International Mathematical Forum 12, no. 20 (2017): 991–1000. http://dx.doi.org/10.12988/imf.2017.71194.
Full textHanif, Usama, Ammara Nosheen, Rabia Bibi, Khuram Ali Khan, and Hamid Reza Moradi. "Some Hardy-Type Inequalities for Superquadratic Functions via Delta Fractional Integrals." Mathematical Problems in Engineering 2021 (May 28, 2021): 1–14. http://dx.doi.org/10.1155/2021/9939468.
Full textDissertations / Theses on the topic "Fractional calculus"
Tavares, Dina dos Santos. "Fractional calculus of variations." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22184.
Full textO cálculo de ordem não inteira, mais conhecido por cálculo fracionário, consiste numa generalização do cálculo integral e diferencial de ordem inteira. Esta tese é dedicada ao estudo de operadores fracionários com ordem variável e problemas variacionais específicos, envolvendo também operadores de ordem variável. Apresentamos uma nova ferramenta numérica para resolver equações diferenciais envolvendo derivadas de Caputo de ordem fracionária variável. Consideram- -se três operadores fracionários do tipo Caputo, e para cada um deles é apresentada uma aproximação dependendo apenas de derivadas de ordem inteira. São ainda apresentadas estimativas para os erros de cada aproximação. Além disso, consideramos alguns problemas variacionais, sujeitos ou não a uma ou mais restrições, onde o funcional depende da derivada combinada de Caputo de ordem fracionária variável. Em particular, obtemos condições de otimalidade necessárias de Euler–Lagrange e sendo o ponto terminal do integral, bem como o seu correspondente valor, livres, foram ainda obtidas as condições de transversalidade para o problema fracionário.
The calculus of non–integer order, usual known as fractional calculus, consists in a generalization of integral and differential integer-order calculus. This thesis is devoted to the study of fractional operators with variable order and specific variational problems involving also variable order operators. We present a new numerical tool to solve differential equations involving Caputo derivatives of fractional variable order. Three Caputo-type fractional operators are considered, and for each one of them, an approximation formula is obtained in terms of standard (integer-order) derivatives only. Estimations for the error of the approximations are also provided. Furthermore, we consider variational problems subject or not to one or more constraints, where the functional depends on a combined Caputo derivative of variable fractional order. In particular, we establish necessary optimality conditions of Euler–Lagrange. As the terminal point in the cost integral, as well the terminal state, are free, thus transversality conditions are obtained.
Kimeu, Joseph M. "Fractional Calculus: Definitions and Applications." TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/115.
Full textMcBride, Adam C. "Fractional calculus, fractional powers of operators and Mellin multiplier transforms." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/15310.
Full textFerreira, Rui Alexandre Cardoso. "Calculus of variations on time scales and discrete fractional calculus." Doctoral thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2921.
Full textEstudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
We study problems of the calculus of variations and optimal control within the framework of time scales. Specifically, we obtain Euler–Lagrange type equations for both Lagrangians depending on higher order delta derivatives and isoperimetric problems. We also develop some direct methods to solve certain classes of variational problems via dynamic inequalities. In the last chapter we introduce fractional difference operators and propose a new discrete-time fractional calculus of variations. Corresponding Euler–Lagrange and Legendre necessary optimality conditions are derived and some illustrative examples provided.
Ito, Yu. "Rough path theory via fractional calculus." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199445.
Full textWaddell, Chris. "Fractional calculus and scales of spaces." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288637.
Full textAbdelsheed, Ismail Gad Ameen. "Fractional calculus: numerical methods and SIR models." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3422267.
Full textIl calcolo frazionario e` ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. L’ idea di generalizzare operatori differenziali ad un ordine non intero, in particolare di ordine 1/2, compare per la prima volta in una corrispondenza di Leibniz con L’Hopital (1695), Johann Bernoulli (1695), e John Wallis (1697), come una semplice domanda o forse un gioco di pensieri. Nei successive trecento anni molti matematici hanno contribuito al calcolo frazionario: Laplace (1812), Lacroix (1812), di Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand e Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), e molti altri. Eppure, è solo dopo la prima conferenza sul calcolo frazionario e le sue applicazioni che questo tema diventa una delle le aree più intensamente studiate dell’analisi matematica. Recentemente, molti matematici e ingegneri hanno cercato di modellare i processi reali utilizzando il calcolo frazionario. Questo a causa del fatto che spesso, la modellazione realistica di un fenomeno fisico non è locale nel tempo, ma dipende anche dalla storia, e questo comportamento può essere ben rappresentato attraverso modelli basati sul calcolo frazionario. In altre parole, la definizione dei derivata frazionaria fornisce un eccellente strumento per la modellazione della memoria e delle proprietà ereditarie di vari materiali e processi.
Shen, Xin. "Applications of Fractional Calculus In Chemical Engineering." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37577.
Full textSikaneta, Ishuwa Christopher. "From fractional calculus to split dimensional regularization." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0012/MQ31867.pdf.
Full textBeig, Mirza Tanweer Ahmad. "Fractional Calculus and Dynamic Approach to Complexity." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822832/.
Full textBooks on the topic "Fractional calculus"
Agarwal, Praveen, Dumitru Baleanu, YangQuan Chen, Shaher Momani, and José António Tenreiro Machado, eds. Fractional Calculus. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0430-3.
Full textC, McBride A., and Roach G. F, eds. Fractional calculus. Boston: Pitman Advanced Pub. Program, 1985.
Find full textXue, Dingyü, and Lu Bai. Fractional Calculus. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-2070-9.
Full textAnastassiou, George A. Generalized Fractional Calculus. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56962-4.
Full textDas, Shantanu. Functional Fractional Calculus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20545-3.
Full textGoodrich, Christopher, and Allan C. Peterson. Discrete Fractional Calculus. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25562-0.
Full textLorenzo, Carl F. Initialized fractional calculus. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2000.
Find full textDas, Shantanu. Functional Fractional Calculus. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textDaftardar-Gejji, Varsha, ed. Fractional Calculus and Fractional Differential Equations. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9227-6.
Full textBook chapters on the topic "Fractional calculus"
Malinowska, Agnieszka B., Tatiana Odzijewicz, and Delfim F. M. Torres. "Fractional Calculus." In Advanced Methods in the Fractional Calculus of Variations, 7–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14756-7_2.
Full textMathai, A. M., Ram Kishore Saxena, and Hans J. Haubold. "Fractional Calculus." In The H-Function, 75–117. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0916-9_3.
Full textPetráš, Ivo. "Fractional Calculus." In Fractional-Order Nonlinear Systems, 7–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18101-6_2.
Full textVyawahare, Vishwesh, and Paluri S. V. Nataraj. "Fractional Calculus." In Fractional-order Modeling of Nuclear Reactor: From Subdiffusive Neutron Transport to Control-oriented Models, 1–10. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7587-2_1.
Full textGorenflo, R., and F. Mainardi. "Fractional Calculus." In Fractals and Fractional Calculus in Continuum Mechanics, 223–76. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2664-6_5.
Full textGorenflo, R. "Fractional Calculus." In Fractals and Fractional Calculus in Continuum Mechanics, 277–90. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2664-6_6.
Full textMainardi, F. "Fractional Calculus." In Fractals and Fractional Calculus in Continuum Mechanics, 291–348. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2664-6_7.
Full textLepik, Ülo, and Helle Hein. "Fractional Calculus." In Mathematical Engineering, 107–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04295-4_8.
Full textBalachandran, K. "Fractional Calculus." In Industrial and Applied Mathematics, 23–49. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6080-4_2.
Full textJin, Bangti. "Fractional Calculus." In Fractional Differential Equations, 19–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76043-4_2.
Full textConference papers on the topic "Fractional calculus"
Alahmad, Rami, and Ahmad Abdelhadi. "Introduction to Fractional Calculus." In 2019 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2019. http://dx.doi.org/10.1109/icaset.2019.8714417.
Full text"Applied fractional order calculus." In 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2016. http://dx.doi.org/10.1109/aqtr.2016.7501362.
Full textCruz-Duarte, Jorge M., and Porfirio Toledo-Hernández. "Fractional Calculus in Mexico: The 5th Mexican Workshop on Fractional Calculus (MWFC)." In MWFC 2022. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/cmsf2022004007.
Full textZeng, Caibin, and YangQuan Chen. "Optimal Random Search, Fractional Dynamics and Fractional Calculus." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12734.
Full textZhang, Yanshan, Feng Zhang, and Mingfeng Lu. "Relationship between fractional calculus and fractional Fourier transform." In SPIE Optical Engineering + Applications, edited by Oliver E. Drummond and Richard D. Teichgraeber. SPIE, 2015. http://dx.doi.org/10.1117/12.2187649.
Full textSchirmer, Pascal A., and Iosif Mporas. "Energy Disaggregation Using Fractional Calculus." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054713.
Full textLiu, Kai, Xi Zhang, and YangQuan Chen. "Energy Informatics and Fractional Calculus." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67485.
Full textYangquan Chen. "Applied Fractional Calculus in controls." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5159794.
Full textMa, Qingxia, Xianguang Lin, and Huijuan Li. "A Comparative Teaching of Fractional Calculus and Integer Calculus." In 2018 International Conference on Social Science and Education Reform (ICSSER 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/icsser-18.2018.22.
Full textMachado, J. A. Tenreiro, Isabel S. Jesus, and Alexandra Galhano. "A Fractional Calculus Perspective in Electromagnetics." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84862.
Full textReports on the topic "Fractional calculus"
D'Elia, Marta, Mamikon Gulian, George Karniadakis, and Hayley Olson. A Unified Theory of Fractional Nonlocal and Weighted Nonlocal Vector Calculus. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1618398.
Full textAltınkaya, Şahsene, Shigeyoshi Owa, and Sibel Yalçın. On a New Class of Analytic Functions Related to Fractional Calculus. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2020. http://dx.doi.org/10.7546/crabs.2020.01.02.
Full textD'Elia, Marta, Mamikon Gulian, Tadele Mengesha, and James Scott. Connections between nonlocal operators: from vector calculus identities to a fractional Helmholtz decomposition. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1855046.
Full text