To see the other types of publications on this topic, follow the link: Fractional calculus operator.

Dissertations / Theses on the topic 'Fractional calculus operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 dissertations / theses for your research on the topic 'Fractional calculus operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Amsheri, Somia M. A. "Fractional calculus operator and its applications to certain classes of analytic functions. A study on fractional derivative operator in analytic and multivalent functions." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6320.

Full text
Abstract:
The main object of this thesis is to obtain numerous applications of fractional derivative operator concerning analytic and -valent (or multivalent) functions in the open unit disk by introducing new classes and deriving new properties. Our finding will provide interesting new results and indicate extensions of a number of known results. In this thesis we investigate a wide class of problems. First, by making use of certain fractional derivative operator, we define various new classes of -valent functions with negative coefficients in the open unit disk such as classes of -valent starlike functions involving results of (Owa, 1985a), classes of -valent starlike and convex functions involving the Hadamard product (or convolution) and classes of -uniformly -valent starlike and convex functions, in obtaining, coefficient estimates, distortion properties, extreme points, closure theorems, modified Hadmard products and inclusion properties. Also, we obtain radii of convexity, starlikeness and close-to-convexity for functions belonging to those classes. Moreover, we derive several new sufficient conditions for starlikeness and convexity of the fractional derivative operator by using certain results of (Owa, 1985a), convolution, Jack¿s lemma and Nunokakawa¿ Lemma. In addition, we obtain coefficient bounds for the functional of functions belonging to certain classes of -valent functions of complex order which generalized the concepts of starlike, Bazilevi¿ and non-Bazilevi¿ functions. We use the method of differential subordination and superordination for analytic functions in the open unit disk in order to derive various new subordination, superordination and sandwich results involving the fractional derivative operator. Finally, we obtain some new strong differential subordination, superordination, sandwich results for -valent functions associated with the fractional derivative operator by investigating appropriate classes of admissible functions. First order linear strong differential subordination properties are studied. Further results including strong differential subordination and superordination based on the fact that the coefficients of the functions associated with the fractional derivative operator are not constants but complex-valued functions are also studied.
APA, Harvard, Vancouver, ISO, and other styles
2

Amsheri, Somia Muftah Ahmed. "Fractional calculus operator and its applications to certain classes of analytic functions : a study on fractional derivative operator in analytic and multivalent functions." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6320.

Full text
Abstract:
The main object of this thesis is to obtain numerous applications of fractional derivative operator concerning analytic and ρ-valent (or multivalent) functions in the open unit disk by introducing new classes and deriving new properties. Our finding will provide interesting new results and indicate extensions of a number of known results. In this thesis we investigate a wide class of problems. First, by making use of certain fractional derivative operator, we define various new classes of ρ-valent functions with negative coefficients in the open unit disk such as classes of ρ-valent starlike functions involving results of (Owa, 1985a), classes of ρ-valent starlike and convex functions involving the Hadamard product (or convolution) and classes of κ-uniformly ρ-valent starlike and convex functions, in obtaining, coefficient estimates, distortion properties, extreme points, closure theorems, modified Hadmard products and inclusion properties. Also, we obtain radii of convexity, starlikeness and close-to-convexity for functions belonging to those classes. Moreover, we derive several new sufficient conditions for starlikeness and convexity of the fractional derivative operator by using certain results of (Owa, 1985a), convolution, Jack's lemma and Nunokakawa' Lemma. In addition, we obtain coefficient bounds for the functional |αρ+2-θα²ρ+1| of functions belonging to certain classes of p-valent functions of complex order which generalized the concepts of starlike, Bazilevič and non-Bazilevič functions. We use the method of differential subordination and superordination for analytic functions in the open unit disk in order to derive various new subordination, superordination and sandwich results involving the fractional derivative operator. Finally, we obtain some new strong differential subordination, superordination, sandwich results for ρ-valent functions associated with the fractional derivative operator by investigating appropriate classes of admissible functions. First order linear strong differential subordination properties are studied. Further results including strong differential subordination and superordination based on the fact that the coefficients of the functions associated with the fractional derivative operator are not constants but complex-valued functions are also studied.
APA, Harvard, Vancouver, ISO, and other styles
3

Khan, Mumtaz Ahmad, and Bhagwat Swaroop Sharma. "A study of three variable analogues of certain fractional integral operators." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95821.

Full text
Abstract:
The paper deals with a three variable analogues of certain fractional integral operators introduced by M. Saigo. Resides giving three variable analogues of earlier known fractional integral operators of one variable as a special cases of newly defined operators, the paper establishes certain results in the form of theorems including integration by parts.
APA, Harvard, Vancouver, ISO, and other styles
4

Uyanik, Meltem. "Analysis of Discrete Fractional Operators and Discrete Fractional Rheological Models." TopSCHOLAR®, 2015. http://digitalcommons.wku.edu/theses/1491.

Full text
Abstract:
This thesis is comprised of two main parts: Monotonicity results on discrete fractional operators and discrete fractional rheological constitutive equations. In the first part of the thesis, we introduce and prove new monotonicity concepts in discrete fractional calculus. In the remainder, we carry previous results about fractional rheological models to the discrete fractional case. The discrete method is expected to provide a better understanding of the concept than the continuous case as this has been the case in the past. In the first chapter, we give brief information about the main results. In the second chapter, we present some fundamental definitions and formulas in discrete fractional calculus. In the third chapter, we introduce two new monotonicity concepts for nonnegative or nonpositive valued functions defined on discrete domains, and then we prove some monotonicity criteria based on the sign of the fractional difference operator of a function. In the fourth chapter, we emphasize the rheological models: We start by giving a brief introduction to rheological models such as Maxwell and Kelvin-Voigt, and then we construct and solve discrete fractional rheological constitutive equations. Finally, we finish this thesis by describing the conclusion and future work.
APA, Harvard, Vancouver, ISO, and other styles
5

Kisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.

Full text
Abstract:
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disciplínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a numerickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější časové škály.
APA, Harvard, Vancouver, ISO, and other styles
6

Waddell, Chris. "Fractional calculus and scales of spaces." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McBride, Adam C. "Fractional calculus, fractional powers of operators and Mellin multiplier transforms." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/15310.

Full text
Abstract:
We shall present a theory of fractional calculus for generalised functions on (0,∞) and use this theory as a basis for extensions to some related areas. In the first section, appropriate spaces of test-functions and generalised functions on (0,∞) are introduced and the properties of operators of fractional calculus obtained relative to these spaces. Applications are given to hypergeometric integral equations, Hankel transforms and dual integral equations of Titchmarsh type. In the second section, the Mellin transform is used to define fractional powers of a very general class of operators. These definitions include standard operators as special cases. Of particular interest are powers of differential operators of Bessel or hyper-Bessel type which are related to integral operators with special functions, notably G-functions, as kernels. In the third section, we examine operators whose Mellin multipliers involve products and/or quotients of Γ-functions. There is a detailed study of the range and invertibility of such operators in weighted LP-spaces and in appropriate spaces of smooth functions. The Laplace and Stieltjes transforms give two particular examples. In the final section, we show how our theory of fractional calculus on (0,∞) can be used to develop a corresponding theory on IRn in the presence of radial symmetry. In this framework the mapping properties of multidimensional radial integrals and Riesz potentials are obtained very precisely.
APA, Harvard, Vancouver, ISO, and other styles
8

Bologna, Mauro. "The Dynamic Foundation of Fractal Operators." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4235/.

Full text
Abstract:
The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. This dissertation, in fact, establishes the existence of a striking conflict between densities and trajectories. The third part of this dissertation is devoted to establishing the consequences of the conflict between trajectories and densities in quantum mechanics, and triggers a search for the experimental assessment of spontaneous wave-function collapses. The research work of this dissertation has been the object of several papers and two books.
APA, Harvard, Vancouver, ISO, and other styles
9

Adams, Jay L. "Hankel Operators for Fractional-Order Systems." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1248198109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hu, Ke. "On an equation being a fractional differential equation with respect to time and a pseudo-differential equation with respect to space related to Lévy-type processes." Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa43021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Herlemont, Basile. "Differential calculus on h-deformed spaces." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0377/document.

Full text
Abstract:
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$
The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$
APA, Harvard, Vancouver, ISO, and other styles
12

Debroux, Noémie. "Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR02/document.

Full text
Abstract:
Dans cette thèse, nous nous proposons d'étudier et de traiter conjointement plusieurs problèmes phares en traitement d'images incluant le recalage d'images qui vise à apparier deux images via une transformation, la segmentation d'images dont le but est de délimiter les contours des objets présents au sein d'une image, et la décomposition d'images intimement liée au débruitage, partitionnant une image en une version plus régulière de celle-ci et sa partie complémentaire oscillante appelée texture, par des approches variationnelles locales et non locales. Les relations étroites existant entre ces différents problèmes motivent l'introduction de modèles conjoints dans lesquels chaque tâche aide les autres, surmontant ainsi certaines difficultés inhérentes au problème isolé. Le premier modèle proposé aborde la problématique de recalage d'images guidé par des résultats intermédiaires de segmentation préservant la topologie, dans un cadre variationnel. Un second modèle de segmentation et de recalage conjoint est introduit, étudié théoriquement et numériquement puis mis à l'épreuve à travers plusieurs simulations numériques. Le dernier modèle présenté tente de répondre à un besoin précis du CEREMA (Centre d'Études et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement) à savoir la détection automatique de fissures sur des images d'enrobés bitumineux. De part la complexité des images à traiter, une méthode conjointe de décomposition et de segmentation de structures fines est mise en place, puis justifiée théoriquement et numériquement, et enfin validée sur les images fournies
In this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images
APA, Harvard, Vancouver, ISO, and other styles
13

Wen-Chieh, Luo, and 羅文杰. "Some Solutions to the Nonhomogeous Jacobi Equation via Fractional Calculus Operator N^u Method." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/14360277169095371409.

Full text
Abstract:
碩士
中原大學
數學研究所
86
In the developing of mathematics, the general idea of fractional calculuscomes from the classical calculus. There are some mathematicians in 17thcentury devoted to the study of fractional calculus. After 19th centurysome mathematicians (Kalla, Oldham, Ross, Tu, Srivastava and K. Nishimotoand so on) have defined and studied differintegral operators and theirapplications. Fractional calculus is used not only in analysis, but alsoin physical problems. Professor Nishimoto has recently obtained the solutions of some differential equations (Gauss, Bessel, Whittaker and Fukuhara ) by invoving the fractional calculus operator N^u method. The main object of the present paper is to investigate the particularsolutions of the nonhomogeneous and homogeneous Jacobi equations and therelation between the particular solutions of the homogeneous Jacobi equation and Gauss Hypergeometric series.
APA, Harvard, Vancouver, ISO, and other styles
14

(6368468), Daesung Kim. "Stability for functional and geometric inequalities and a stochastic representation of fractional integrals and nonlocal operators." Thesis, 2019.

Find full text
Abstract:
The dissertation consists of two research topics.

The first research direction is to study stability of functional and geometric inequalities. Stability problem is to estimate the deficit of a functional or geometric inequality in terms of the distance from the class of optimizers or a functional that identifies the optimizers. In particular, we investigate the logarithmic Sobolev inequality, the Beckner-Hirschman inequality (the entropic uncertainty principle), and isoperimetric type inequalities for the expected lifetime of Brownian motion.

The second topic of the thesis is a stochastic representation of fractional integrals and nonlocal operators. We extend the Hardy-Littlewood-Sobolev inequality to symmetric Markov semigroups. To this end, we construct a stochastic representation of the fractional integral using the background radiation process. The inequality follows from a new inequality for the fractional Littlewood-Paley square function. We also prove the Hardy-Stein identity for non-symmetric pure jump Levy processes and the L^p boundedness of a certain class of Fourier multiplier operators arising from non-symmetric pure jump Levy processes. The proof is based on Ito's formula for general jump processes and the symmetrization of Levy processes.
APA, Harvard, Vancouver, ISO, and other styles
15

Toudjeu, Ignace Tchangou. "Mathematical analysis of generalized linear evolution equations with the non-singular kernel derivative." Diss., 2019. http://hdl.handle.net/10500/25774.

Full text
Abstract:
Linear Evolution Equations (LEE) have been studied extensively over many years. Their extension in the field of fractional calculus have been defined by Dαu(x, t) = Au(x, t), where α is the fractional order and Dα is a generalized differential operator. Two types of generalized differential operators were applied to the LEE in the state-of-the-art, producing the Riemann-Liouville and the Caputo time fractional evolution equations. However the extension of the new Caputo-Fabrizio derivative (CFFD) to these equations has not been developed. This work investigates existing fractional derivative evolution equations and analyze the generalized linear evolution equations with non-singular ker- nel derivative. The well-posedness of the extended CFFD linear evolution equation is demonstrated by proving the existence of a solution, the uniqueness of the existing solu- tion, and finally the continuous dependence of the behavior of the solution on the data and parameters. Extended evolution equations with CFFD are applied to kinetics, heat diffusion and dispersion of shallow water waves using MATLAB simulation software for validation purpose.
Mathematical Science
M Sc. (Applied Mathematics)
APA, Harvard, Vancouver, ISO, and other styles
16

George, A. J. "A Study On Solutions Of Singular Integral Equations." Thesis, 1995. http://etd.iisc.ernet.in/handle/2005/1736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography