Academic literature on the topic 'Fractional derivatives'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractional derivatives.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractional derivatives"
Feng, Xiaobing, and Mitchell Sutton. "A new theory of fractional differential calculus." Analysis and Applications 19, no. 04 (February 20, 2021): 715–50. http://dx.doi.org/10.1142/s0219530521500019.
Full textOrtigueira, Manuel Duarte, and Gabriel Bengochea. "Bilateral Tempered Fractional Derivatives." Symmetry 13, no. 5 (May 8, 2021): 823. http://dx.doi.org/10.3390/sym13050823.
Full textFarayola, Musiliu Folarin, Sharidan Shafie, Fuaada Mohd Siam, Rozi Mahmud, and Suraju Olusegun Ajadi. "Mathematical modeling of cancer treatments with fractional derivatives: An Overview." Malaysian Journal of Fundamental and Applied Sciences 17, no. 4 (August 31, 2021): 389–401. http://dx.doi.org/10.11113/mjfas.v17n4.2062.
Full textLi, Changpin, Deliang Qian, and YangQuan Chen. "On Riemann-Liouville and Caputo Derivatives." Discrete Dynamics in Nature and Society 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/562494.
Full textTARASOV, VASILY E. "FRACTIONAL DERIVATIVE AS FRACTIONAL POWER OF DERIVATIVE." International Journal of Mathematics 18, no. 03 (March 2007): 281–99. http://dx.doi.org/10.1142/s0129167x07004102.
Full textSene, Ndolane, and José Francisco Gómez Aguilar. "Fractional Mass-Spring-Damper System Described by Generalized Fractional Order Derivatives." Fractal and Fractional 3, no. 3 (July 7, 2019): 39. http://dx.doi.org/10.3390/fractalfract3030039.
Full textAtangana, Abdon, and Aydin Secer. "A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/279681.
Full textİlhan, Esin, and İ. Onur Kıymaz. "A generalization of truncated M-fractional derivative and applications to fractional differential equations." Applied Mathematics and Nonlinear Sciences 5, no. 1 (March 31, 2020): 171–88. http://dx.doi.org/10.2478/amns.2020.1.00016.
Full textHattaf, Khalid. "On Some Properties of the New Generalized Fractional Derivative with Non-Singular Kernel." Mathematical Problems in Engineering 2021 (May 27, 2021): 1–6. http://dx.doi.org/10.1155/2021/1580396.
Full textGarrappa, Roberto, Eva Kaslik, and Marina Popolizio. "Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial." Mathematics 7, no. 5 (May 7, 2019): 407. http://dx.doi.org/10.3390/math7050407.
Full textDissertations / Theses on the topic "Fractional derivatives"
Katugampola, Don Udita Nalin. "ON GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/387.
Full textTraytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193646.
Full textSchiavone, S. E. "Distributional theories for multidimensional fractional integrals and derivatives." Thesis, University of Strathclyde, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382492.
Full textTraytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Diffusion fundamentals 6 (2007) 38, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14215.
Full textMunkhammar, Joakim. "Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series." Thesis, Uppsala University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121418.
Full textShi, Chen Yang. "High order compact schemes for fractional differential equations with mixed derivatives." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691348.
Full textHaveroth, Thais Clara da Costa. "On the use of fractional derivatives for modeling nonlinear viscoelasticity." Universidade do Estado de Santa Catarina, 2015. http://tede.udesc.br/handle/handle/2069.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Dentre a vasta gama de polímeros estruturais atualmente disponíveis no mercado, este trabalho está particularmente voltado ao estudo do polietileno de alta densidade. Embora este material já tenha sido investigado por diversos autores, seu típico comportamento viscoelástico não-linear apresenta dificuldades na modelagem. Visando uma nova contribuição, este trabalho propõe a descrição de tal comportamento utilizando uma abordagem baseada em derivadas fracionários. Esta formulação produz equações constitutivas fracionais que resultam em boas propriedades de ajuste de curvas com menos parâmetros a serem identificados que nos métodos tradicionais. Neste sentido, os resultados experimentais de fluência para o polietileno de alta densidade, avaliados em diferentes níveis de tensão, são ajustados por este esquema. Para estimar a deformação à níveis de tensão que não tenham sido medidos experimentalmente, o princípio da equivalência tensão-tempo é utilizado e os resultados são comparados com aqueles apresentados por uma interpolação linear dos parâmetros. Além disso, o princípio da superposição modificado é aplicado para predizer a comportamento de materiais sujeitos a níveis de tensão que mudam abruptamente ao longo do tempo. Embora a abordagem fracionária simplifique o problema de otimização inversa subjacente, é observado um grande aumento no esforço computacional. Assim, alguns algoritmos que objetivam economia computacional, são estudados. Conclui-se que, quando acurária é necessária ou quando um modelo de séries Prony requer um número muito grande de parâmetros, a abordagem fracionária pode ser uma opção interessante.
Among the wide range of structural polymers currently available in the market, this work is concerned particularly with high density polyethylene. The typical nonlinear viscoelastic behavior presented by this material is not trivial to model, and has already been investigated by many authors in the past. Aiming at a further contribution, this work proposes modeling this material behavior using an approach based on fractional derivatives. This formulation produces fractional constitutive equations that result in good curve-fitting properties with less parameters to be identified when compared to traditional methods. In this regard, experimental creep results of high density polyethylene evaluated at different stress levels are fitted by this scheme. To estimate creep at stress levels that have not been measured experimentally, the time-stress equivalence principle is used and the results are compared with those presented by a linear interpolation of the parameters. Furthermore, the modified superposition principle is applied to predict the strain for materials subject to stress levels which change abruptly from time to time. Some comparative results are presented showing that the fractional approach proposed in this work leads to better results in relation to traditional formulations described in the literature. Although the fractional approach simplifies the underlying inverse optimization problem, a major increase in computational effort is observed. Hence, some algorithms that show computational cost reduction, are studied. It is concluded that when high accuracy is mandatory or when a Prony series model requires a very large number of parameters, the fractional approach may be an interesting option.
Atkins, Zoe. "Almost sharp fronts : limit equations for a two-dimensional model with fractional derivatives." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55759/.
Full textBlanc, Emilie. "Time-domain numerical modeling of poroelastic waves : the Biot-JKD model with fractional derivatives." Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00954506.
Full textFernandez, Arran. "Analysis in fractional calculus and asymptotics related to zeta functions." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284390.
Full textBooks on the topic "Fractional derivatives"
Gómez, José Francisco, Lizeth Torres, and Ricardo Fabricio Escobar, eds. Fractional Derivatives with Mittag-Leffler Kernel. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11662-0.
Full textUchaikin, Vladimir V. Fractional Derivatives for Physicists and Engineers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33911-0.
Full textA, Kilbas A., and Marichev O. I, eds. Fractional integrals and derivatives: Theory and applications. Switzerland: Gordon and Breach Science Publishers, 1993.
Find full textBrychkov, I︠U︡ A. Handbook of special functions: Derivatives, integrals, series, and other formulas. Boca Raton: CRC Press, 2008.
Find full textBrychkov, I︠U︡ A. Handbook of special functions: Derivatives, integrals, series and other formulas. Boca Raton: CRC Press, 2008.
Find full textGao, Feng, Xiao-Jun Yang, and Ju Yang. General Fractional Derivatives with Applications in Viscoelasticity. Elsevier Science & Technology Books, 2020.
Find full textGao, Feng, Xiao-Jun Yang, and Ju Yang. General Fractional Derivatives with Applications in Viscoelasticity. Elsevier Science & Technology, 2020.
Find full textGeneral Fractional Derivatives with Applications in Viscoelasticity. Elsevier, 2020. http://dx.doi.org/10.1016/c2018-0-01749-1.
Full textUchaikin, Vladimir V. Fractional Derivatives for Physicists and Engineers: Background and Theory. 2013.
Find full textFractional Differential Equations - An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Elsevier, 1999. http://dx.doi.org/10.1016/s0076-5392(99)x8001-5.
Full textBook chapters on the topic "Fractional derivatives"
Capelas de Oliveira, Edmundo. "Fractional Derivatives." In Studies in Systems, Decision and Control, 169–222. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20524-9_5.
Full textZhao, Xuan, and Zhi-Zhong Sun. "Time-fractional derivatives." In Numerical Methods, edited by George Em Karniadakis, 23–48. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571684-002.
Full textYang, Xiao-Jun. "Introduction." In General Fractional Derivatives, 1–37. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-1.
Full textYang, Xiao-Jun. "Fractional Derivatives of Constant Order and Applications." In General Fractional Derivatives, 39–142. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-2.
Full textYang, Xiao-Jun. "General Fractional Derivatives of Constant Order and Applications." In General Fractional Derivatives, 145–234. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-3.
Full textYang, Xiao-Jun. "Fractional Derivatives of Variable Order and Applications." In General Fractional Derivatives, 235–66. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-4.
Full textYang, Xiao-Jun. "Fractional Derivatives of Variable Order with Respect to Another Function and Applications." In General Fractional Derivatives, 267–88. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429284083-5.
Full textUchaikin, Vladimir V. "Fractional Differentiation." In Fractional Derivatives for Physicists and Engineers, 199–255. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33911-0_4.
Full textOrtigueira, Manuel Duarte. "The Causal Fractional Derivatives." In Fractional Calculus for Scientists and Engineers, 5–41. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0747-4_2.
Full textOrtigueira, Manuel Duarte. "Two-Sided Fractional Derivatives." In Fractional Calculus for Scientists and Engineers, 101–21. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0747-4_5.
Full textConference papers on the topic "Fractional derivatives"
Kuroda, Masaharu. "Fractional Derivatives and Complex Modes of Vibration." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86933.
Full textPooseh, Shakoor, Helena Sofia Rodrigues, Delfim F. M. Torres, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Fractional Derivatives in Dengue Epidemics." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636838.
Full textBaleanu, Dumitru, Om P. Agrawal, and Sami I. Muslih. "Lagrangians With Linear Velocities Within Hilfer Fractional Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47953.
Full textSousa, Ercilia. "A close look at fractional derivatives approximations." In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967384.
Full textOrtigueira, Manuel D., and Juan J. Trujillo. "On a Unified Fractional Derivative." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47317.
Full textOrtigueira, Manuel Duarte, and Arnaldo Guimara˜es Batista. "A New Look at the Fractional Brownian Motion Definition." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35218.
Full textUnser, Michael A., and Thierry Blu. "Fractional wavelets, derivatives, and Besov spaces." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Michael A. Unser, Akram Aldroubi, and Andrew F. Laine. SPIE, 2003. http://dx.doi.org/10.1117/12.507443.
Full textShastri, Subramanian V., and Kumpati S. Narendra. "Fractional Order Derivatives in Systems Theory." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147605.
Full textJimenez-Garcia, Jesus, and G. Rodriguez-Zurita. "Phase object tomography with fractional derivatives." In IV Iberoamerican Meeting of Optics and the VII Latin American Meeting of Optics, Lasers and Their Applications, edited by Vera L. Brudny, Silvia A. Ledesma, and Mario C. Marconi. SPIE, 2001. http://dx.doi.org/10.1117/12.437182.
Full textBhardwaj, Anuj, and Anjali Wadhwa. "Medical image enhancement using fractional derivatives." In ADVANCEMENTS IN MATHEMATICS AND ITS EMERGING AREAS. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003376.
Full text