To see the other types of publications on this topic, follow the link: Fractional derivatives.

Dissertations / Theses on the topic 'Fractional derivatives'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Fractional derivatives.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Katugampola, Don Udita Nalin. "ON GENERALIZED FRACTIONAL INTEGRALS AND DERIVATIVES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/387.

Full text
Abstract:
In this paper we present a generalization to two existing fractional integrals and derivatives, namely, the Riemann-Liouville and Hadamard fractional operators. The existence and uniqueness results for single term fractional differential equations (FDE) have also been established. We also obtain the Mellin transforms of such generalized fractional operators which are important in solving fractional differential equations.
APA, Harvard, Vancouver, ISO, and other styles
2

Traytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schiavone, S. E. "Distributional theories for multidimensional fractional integrals and derivatives." Thesis, University of Strathclyde, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Traytak, Sergey D., and Tatyana V. Traytak. "Method of fractional derivatives in time-dependent diffusion." Diffusion fundamentals 6 (2007) 38, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Munkhammar, Joakim. "Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series." Thesis, Uppsala University, Department of Mathematics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shi, Chen Yang. "High order compact schemes for fractional differential equations with mixed derivatives." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haveroth, Thais Clara da Costa. "On the use of fractional derivatives for modeling nonlinear viscoelasticity." Universidade do Estado de Santa Catarina, 2015. http://tede.udesc.br/handle/handle/2069.

Full text
Abstract:
Made available in DSpace on 2016-12-12T20:25:13Z (GMT). No. of bitstreams: 1 Thais Clara da Costa Haveroth.pdf: 3726370 bytes, checksum: 204349100247f52ea6bf4916ec49a0ab (MD5) Previous issue date: 2015-10-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Dentre a vasta gama de polímeros estruturais atualmente disponíveis no mercado, este trabalho está particularmente voltado ao estudo do polietileno de alta densidade. Embora este material já tenha sido investigado por diversos autores, seu típico comportamento viscoelástico não-linear apresenta dificuldades na modelagem. Visando uma nova contribuição, este trabalho propõe a descrição de tal comportamento utilizando uma abordagem baseada em derivadas fracionários. Esta formulação produz equações constitutivas fracionais que resultam em boas propriedades de ajuste de curvas com menos parâmetros a serem identificados que nos métodos tradicionais. Neste sentido, os resultados experimentais de fluência para o polietileno de alta densidade, avaliados em diferentes níveis de tensão, são ajustados por este esquema. Para estimar a deformação à níveis de tensão que não tenham sido medidos experimentalmente, o princípio da equivalência tensão-tempo é utilizado e os resultados são comparados com aqueles apresentados por uma interpolação linear dos parâmetros. Além disso, o princípio da superposição modificado é aplicado para predizer a comportamento de materiais sujeitos a níveis de tensão que mudam abruptamente ao longo do tempo. Embora a abordagem fracionária simplifique o problema de otimização inversa subjacente, é observado um grande aumento no esforço computacional. Assim, alguns algoritmos que objetivam economia computacional, são estudados. Conclui-se que, quando acurária é necessária ou quando um modelo de séries Prony requer um número muito grande de parâmetros, a abordagem fracionária pode ser uma opção interessante.
Among the wide range of structural polymers currently available in the market, this work is concerned particularly with high density polyethylene. The typical nonlinear viscoelastic behavior presented by this material is not trivial to model, and has already been investigated by many authors in the past. Aiming at a further contribution, this work proposes modeling this material behavior using an approach based on fractional derivatives. This formulation produces fractional constitutive equations that result in good curve-fitting properties with less parameters to be identified when compared to traditional methods. In this regard, experimental creep results of high density polyethylene evaluated at different stress levels are fitted by this scheme. To estimate creep at stress levels that have not been measured experimentally, the time-stress equivalence principle is used and the results are compared with those presented by a linear interpolation of the parameters. Furthermore, the modified superposition principle is applied to predict the strain for materials subject to stress levels which change abruptly from time to time. Some comparative results are presented showing that the fractional approach proposed in this work leads to better results in relation to traditional formulations described in the literature. Although the fractional approach simplifies the underlying inverse optimization problem, a major increase in computational effort is observed. Hence, some algorithms that show computational cost reduction, are studied. It is concluded that when high accuracy is mandatory or when a Prony series model requires a very large number of parameters, the fractional approach may be an interesting option.
APA, Harvard, Vancouver, ISO, and other styles
8

Atkins, Zoe. "Almost sharp fronts : limit equations for a two-dimensional model with fractional derivatives." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55759/.

Full text
Abstract:
We consider the evolution of sharp fronts and almost-sharp fronts for the ↵-equation, where for an active scalar q the corresponding velocity is defined by u = r?(−#)−(2 − ↵)/2q for 0 < ↵ < 1. This system is introduced as a model interpolating between the two-dimensional Euler equation (↵ = 0) and the surface quasi-geostrophic (SQG) equation (↵ = 1). The study of such fronts for the SQG equation was introduced as a natural extension when searching for potential singularities for the three-dimensional Euler equation due to similarities between these two systems, with sharp-fronts corresponding to vortex-lines in the Euler case (Constantin et al., 1994b). Almost-sharp fronts were introduced in C´ordoba et al. (2004) as a regularisation of a sharp front with thickness $, with interest in the study of such solutions as $ ! 0, in particular those that maintain their structure up to a time independent of $. The construction of almost-sharp front solutions to the SQG equation is the subject of current work (Fe↵erman and Rodrigo, 2012). The existence of exact solutions remains an open problem. For the ↵-equation we prove analogues of several known theorems for the SQG equations and extend these to investigate the construction of almost-sharp front solutions. Using a version of the Abstract Cauchy Kovalevskaya theorem (Safonov, 1995) we show for fixed 0 < ↵ < 1, under analytic assumptions, the existence and uniqueness of approximate solutions and exact solutions for short-time independent of $; such solutions take a form asymptotic to almost-sharp fronts. Finally, we obtain the existence and uniqueness of analytic almost-sharp front solutions.
APA, Harvard, Vancouver, ISO, and other styles
9

Blanc, Emilie. "Time-domain numerical modeling of poroelastic waves : the Biot-JKD model with fractional derivatives." Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00954506.

Full text
Abstract:
Une modélisation numérique des ondes poroélastiques, décrites par le modèle de Biot, est proposée dans le domaine temporel. La dissipation visqueuse à l'intérieur des pores est décrite par le modèle de perméabilité dynamique, développé par Johnson-Koplik-Dashen (JKD). Certains coefficients du modèle de Biot-JKD sont proportionnels à la racine carrée de la fréquence : dans le domaine temporel, ces coefficients introduisent des dérivées fractionnaires décalées d'ordre 1/2, qui reviennent à un produit de convolution. Basé sur une représentation diffusive, le produit de convolution est remplacé par un nombre fini de variables de mémoire, dont la relaxation est gouvernée par une équation différentielle ordinaire locale en temps, ce qui mène au modèle de Biot-DA (approximation diffusive). Les propriétés du modèle de Biot-JKD et du modèle de Biot-DA sont analysées : hyperbolicité, décroissance de l'énergie, dispersion. Pour déterminer les coefficients de l'approximation diffusive, différentes méthodes de quadrature sont proposées : quadratures de Gauss, procédures d'optimisation linéaire ou non-linéaire sur la plage de fréquence d'intérêt. On montre que l'optimisation non-linéaire est la meilleure méthode de détermination. Le système est modélisé numériquement en utilisant une méthode de splitting : la partie propagative est discrétisée par un schéma aux différences finies ADER, d'ordre 4 en espace et en temps, et la partie diffusive est intégrée exactement. Une méthode d'interface immergée est implémentée pour discrétiser la géometrie sur une grille cartésienne et pour discrétiser les conditions de saut aux interfaces. Des simulations numériques sont présentées, pour des milieux isotropes et isotropes transverses. Des comparaisons avec des solutions analytiques montrent l'efficacité et la précision de cette approche. Des simulations numériques en milieux complexes sont réalisées : influence de la porosité d'os spongieux, diffusion multiple en milieu aléatoire.
APA, Harvard, Vancouver, ISO, and other styles
10

Fernandez, Arran. "Analysis in fractional calculus and asymptotics related to zeta functions." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284390.

Full text
Abstract:
This thesis presents results in two apparently disparate mathematical fields which can both be examined -- and even united -- by means of pure analysis. Fractional calculus is the study of differentiation and integration to non-integer orders. Dating back to Leibniz, this idea was considered by many great mathematical figures, and in recent decades it has been used to model many real-world systems and processes, but a full development of the mathematical theory remains incomplete. Many techniques for partial differential equations (PDEs) can be extended to fractional PDEs too. Three chapters below cover my results in this area: establishing the elliptic regularity theorem, Malgrange-Ehrenpreis theorem, and unified transform method for fractional PDEs. Each one is analogous to a known result for classical PDEs, but the proof in the general fractional scenario requires new ideas and modifications. Fractional derivatives and integrals are not uniquely defined: there are many different formulae, each of which has its own advantages and disadvantages. The most commonly used is the classical Riemann-Liouville model, but others may be preferred in different situations, and now new fractional models are being proposed and developed each year. This creates many opportunities for new research, since each time a model is proposed, its mathematical fundamentals need to be examined and developed. Two chapters below investigate some of these new models. My results on the Atangana-Baleanu model proposed in 2016 have already had a noticeable impact on research in this area. Furthermore, this model and the results concerning it can be extended to more general fractional models which also have certain desirable properties of their own. Fractional calculus and zeta functions have rarely been united in research, but one chapter below covers a new formula expressing the Lerch zeta function as a fractional derivative of an elementary function. This result could have many ramifications in both fields, which are yet to be explored fully. Zeta functions are very important in analytic number theory: the Riemann zeta function relates to the distribution of the primes, and this field contains some of the most persistent open problems in mathematics. Since 2012, novel asymptotic techniques have been applied to derive new results on the growth of the Riemann zeta function. One chapter below modifies some of these techniques to prove asymptotics to all orders for the Hurwitz zeta function. Many new ideas are required, but the end result is more elegant than the original one for Riemann zeta, because some of the new methodologies enable different parts of the argument to be presented in a more unified way. Several related problems involve asymptotics arbitrarily near a stationary point. Ideally it should be possible to find uniform asymptotics which provide a smooth transition between the integration by parts and stationary phase methods. One chapter below solves this problem for a particular integral which arises in the analysis of zeta functions.
APA, Harvard, Vancouver, ISO, and other styles
11

Jiang, Xin. "A Systematic Approach for Digital Hardware Realization of Fractional-Order Operators and Systems." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1386649994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kárský, Vilém. "Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316278.

Full text
Abstract:
This paper concentrates on the description of fractional order LTI SISO systems using generalized Laguerre functions. There are properties of generalized Laguerre functions described in the paper, and an orthogonal base of these functions is shown. Next the concept of fractional derivatives is explained. The last part of this paper deals with the representation of fractional order LTI SISO systems using generalized Laguerre functions. Several examples were solved to demonstrate the benefits of using these functions for the representation of LTI SISO systems.
APA, Harvard, Vancouver, ISO, and other styles
13

Mucha, Ján. "Pokročilé metody parametrizace online písma osob s grafomotorickými obtížemi." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-438731.

Full text
Abstract:
Grafomotorické obtíže (GD) výrazně ovlivňují kvalitu života školním věkem počínajíc, kde se vyvíjejí grafomotorické schopnosti, až do důchodového věku. Včasná diagnóza těchto obtíží a terapeutický zásah mají velký význam k jejich zlepšení. Vzhledem k tomu, že GD souvisí z vícerými symptomy v oblasti kinematiky, základní kinematické parametry jako rychlost, zrychlení a švih prokázaly efektivní kvantizaci těchto symptomů. Objektivní výpočetní systém podpory rozhodování pro identifikaci a vyšetření GD však není dostupný. A proto je hlavním cílem mé disertační práce výzkum pokročilé metody parametrizace online písma pro analýzu GD se speciálním zaměřením na využití metod zlomkového kalkulu. Tato práce je první, která experimentuje s využitím derivací neceločíselného řádu (FD) pro analýzu GD pomocí online písma získaného od pacientů s Parkinsonovou nemocí a u dětí školního věku. Byla navržena a evaluována nová metoda parametrizace online písma založena na FD využitím Grünwald-Letnikova přístupu. Bylo dokázáno, že navržená metoda významně zlepšuje diskriminační sílu a deskriptivní schopnosti v oblasti Parkinsonické dysgrafie. Stejně tak metoda pozitivně ovlivnila i nejmodernější techniky v oblasti analýzy GD u dětí školního věku. Vyvinutá parametrizace byla optimalizována s ohledem na výpočetní náročnost (až o 80 %) a také na vyladění řádu FD. Ke konci práce byly porovnány víceré přístupy výpočtu FD, jmenovitě Riemann-Liouvillův, Caputův společně z Grünwald-Letnikovým přístupem za účelem identifikace těch nejvhodnějších pro jednotlivé oblasti analýzy GD.
APA, Harvard, Vancouver, ISO, and other styles
14

Teodoro, Graziane Sales 1990. "Cálculo fracionário e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306995.

Full text
Abstract:
Orientador: Edmundo Capelas de Oliveira
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-24T12:52:57Z (GMT). No. of bitstreams: 1 Teodoro_GrazianeSales_M.pdf: 8150080 bytes, checksum: 07ef5ddebc25d941750b2dee59bd4022 (MD5) Previous issue date: 2014
Resumo: O cálculo fracionário, nomenclatura utilizada para cálculo de ordem não inteira, tem se mostrado importante e, em muitos casos, imprescindível na discussão de problemas advindos de diversas áreas da ciência, como na matemática, física, engenharia, economia e em muitos outros campos. Neste contexto, abordamos a integral fracionária e as derivadas fracionárias, segundo Caputo e segundo Riemann-Liouville. Dentre as funções relacionadas ao cálculo fracionário, uma das mais importantes é a função de Mittag-Leffler, surgindo naturalmente na solução de várias equações diferenciais fracionárias com coeficientes constantes. Tendo em vista a importância dessa função, a clássica função de Mittag-Leffler e algumas de suas várias generalizações são apresentadas neste trabalho. Na aplicação resolvemos a equação diferencial associada ao problema do oscilador harmônico fracionário, utilizando a transformada de Laplace e a derivada fracionária segundo Caputo
Abstract: The fractional calculus, which is the nomenclature used to the non-integer order calculus, has important applications due to its direct involvement in problem resolution and discussion in many fields, such as mathematics, physics, engineering, economy, applied sciences and many others. In this sense, we studied the fractional integral and fractional derivates: one proposed by Caputo and the other by Riemann-Liouville. Among the fractional calculus's functions, one of most important is the Mittag-Leffler function. This function naturally occurs as the solution for fractional order differential equations with constant coeficients. Due to the importance of the Mittag-Leffler functions, various properties and generalizations are presented in this dissertation. We also presented an application in fractional calculus, in which we solved the differential equation associated the with fractional harmonic oscillator. To solve this fractional oscillator equation, we used the Laplace transform and Caputo fractional derivate
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
15

Pedjeu, Jean-Claude. "Multi-time Scales Stochastic Dynamic Processes: Modeling, Methods, Algorithms, Analysis, and Applications." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4383.

Full text
Abstract:
By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model is formulated and it leads to a system of multi-time scale stochastic differential equations. The classical Picard-Lindel\"{o}f successive approximations scheme is expended to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this generates to a problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations. To illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are exhibited. Without loss in generality, the modeling and analysis of three time-scale fractional stochastic differential equations is followed by the development of the numerical algorithm for multi-time scale dynamic equations. The development of numerical algorithm is based on the idea if numerical integration in the context of the notion of multi-time scale integration. The multi-time scale approach is applied to explore the study of higher order stochastic differential equations (HOSDE) is presented. This study utilizes the variation of constant parameter technique to develop a method for finding closed form solution processes of classes of HOSDE. Then then probability distribution of the solution processes in the context of the second order equations is investigated.
APA, Harvard, Vancouver, ISO, and other styles
16

Oliveira, Daniela dos Santos de 1990. "Derivada fracionária e as funções de Mittag-Leffler." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306994.

Full text
Abstract:
Orientador: Edmundo Capelas de Oliveira
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T00:53:38Z (GMT). No. of bitstreams: 1 Oliveira_DanieladosSantosde_M.pdf: 3702602 bytes, checksum: c0b05792ff3ac3c5bdd5fad1b7586dd5 (MD5) Previous issue date: 2014
Resumo: Neste trabalho apresentamos um estudo sobre as funções de Mittag-Leffler de um, dois e três parâmetros. Apresentamos a função de Mittag-Leffler como uma generalização da função exponencial bem como a relação que esta possui com outras funções especiais, tais como as funções beta, gama, gama incompleta e erro. Abordamos, também, a integração fracionária que se faz necessária para introduzir o conceito de derivação fracionária. Duas formulações para a derivada fracionária são estudadas, as formulações proposta por Riemann-Liouville e por Caputo. Investigamos quais regras clássicas de derivação são estendidas para estas formulações. Por fim, como uma aplicação, utilizamos a metodologia da transformada de Laplace para resolver a equação diferencial fracionária associada ao problema do oscilador harmônico fracionário
Abstract: This work presents a study about the one- two- and three-parameters Mittag-Leffler functions. We show that the Mittag-Leffler function is a generalization of the exponential function and present its relations to other special functions beta, gamma, incomplete gamma and error functions. We also approach fractional integration, which is necessary to introduce the concept of fractional derivatives. Two formulations for the fractional derivative are studied, the formulations proposed by Riemann-Liouville and by Caputo. We investigate which classical derivatives rules can be extended to these formulations. Finally, as an application, using the Laplace transform methodology, we discuss the fractional differential equation associated with the harmonic oscillator problem
Mestrado
Matematica Aplicada
Mestra em Matemática Aplicada
APA, Harvard, Vancouver, ISO, and other styles
17

Miloš, Japundžić. "Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=102114&source=NDLTD&language=en.

Full text
Abstract:
Doktorska disertacija je posvećena rešavanju Košijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uopštenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 < α < 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno rešavana, tako što je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za rešavanje smo koristili dobro poznate uopštene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su rešavane nehomogene frakcione evolucione jednačine sa Kaputovimfrakcionim izvodom reda 0 < α < 2, linearnim, zatvorenim i gusto definisanimoperatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zaviseod x. Odgovarajuća aproksimativna jednačina sadrži uopšteni operator asociran sa polaznim operatorom, dok su rešenja dobijena primenom, za tu svrhu                   u disertaciji konstruisanih, uopštenih uniformno neprekidnih operatora rešenja.U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenostrešenja Košijevog problema na odgovarajućem Kolomboovom prostoru.
Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 < α < 2 and variable coefficients depending on x and t. This class of equations is solved  approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their  regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 < α < 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation   is a given by the generalized operator associated to the originate  operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmad, Khan Mumtaz, and K. S. Nisar. "On a Generalizations of Lauricella’s Functions of Several Variables." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/97061.

Full text
Abstract:
The present paper introduces 10 Appell’s type generalized functions Ni, i = 1, 2, ...... 10 by considering the product of n − 3F2 functions. The paper contains Fractional derivative representations, Integral representations and symbolic forms similar to those obtained by J. L. Burchnall and T. W.Chaundy for the four Appell’s functions, have been obtained for these newly defined functions N1, N2.......N10. The results obtained are believed to be new.
El presente artículo introduce 10 tipo de funciones generalizadas tipo Appell Ni, 1 ≤ i ≤ 10, considerando el producto de n funciones 3F2. El artículo contiene representaciones por derivadas fraccionales, representaciones integrales y formas simbólicas similares a aquellas obtenidas por J. L. Burchnall y T. W. Chaundy para las cuatro funciones de Appell, han sido obtenidas para estas nuevas funciones N1, N2.......N10. Los resultados parecen ser nuevos.
APA, Harvard, Vancouver, ISO, and other styles
19

Oti, Vincent Bediako. "Numerické metody pro řešení počátečních úloh zlomkových diferenciálních rovnic." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445462.

Full text
Abstract:
Tato diplomová práce se zabývá numerickými metodami pro řešení počátečních problémů zlomkových diferenciálních rovnic s Caputovou derivací. Jsou uvedeny dva numerické přístupy spolu s přehledem základních aproximačních formulí. Dvě verze Eulerovy metody jsou realizovány v Matlabu a porovnány na základě numerických experimentů.
APA, Harvard, Vancouver, ISO, and other styles
20

Ouloin, Martyrs. "Méthode d’inversion d’un Modèle de diffusion Mobile Immobile fractionnaire." Thesis, Avignon, 2012. http://www.theses.fr/2012AVIG0504/document.

Full text
Abstract:
L’étude expérimentale du transport de soluté dans les milieux poreux montre des écarts à la loi de Fick. D’autre part, des progrès importants ont été accomplis sur le transport en milieu poreux, en supposant que les fluides (et les traceurs) en mouvement dans ces milieux sont arrêtés pendant des durées aléatoires. La matrice solide rend cette idée plausible. Nous étudions un modèle utilisant cette idée en l’associant à des durées d’immobilisation sans moyenne finie, en fait distribuées par des lois de Lévy. On arrive ainsi au modèle MIM fractionnaire, ou fractal.Ce modèle est une équation aux dérivées partielles pour la densité de traceur. Il équivaut à supposer que les particules de fluide et de traceur font des déplacements régis par un processus stochastique. Ce dernier est la limite hydrodynamique de marches au hasard fondées sur des déplacements convectifs, des sauts gaussiens, et des arrêts distribués suivant une loi de Lévy. Ces deux versions du même modèle donnent deux méthodes de simulation numérique.Nous montrons comment mettre en œuvre ces méthodes. Ceci a pour but la maîtrise d’outils de simulation, afin de comparer avec des données expérimentales pour savoir si ce modèle convient pour décrire le transport dans un milieu donné. Cette simulation, pour être efficace, nécessite la connaissance des paramètres du transport de soluté au sein du milieu donné. Ils sont difficilement mesurables et/ou identifiables en pratique. Donc, il faut pouvoir les estimer à partir de grandeurs qu’on sait mesurer directement, comme la densité d’un traceur. Pour cela, nous avons mis en place une méthode d’inversion qui permet d’extraire les paramètres du modèle MIM fractionnaire, à partir de données expérimentales. Cette méthode d’inversion est basée sur la transformation de Laplace. Elle utilise le lien entre les paramètres de transport du modèle MIM fractionnaire, et les dérivées de la transformée de Laplace des solutions de ce modèle. Ce lien est exact dans un milieu semi-infini, et seulement approché dans un milieu fini.Après avoir testé cette méthode en l’appliquant à des données numériques en essayant de retrouver leurs paramètres à "l’aveugle", nous l’appliquons à des données issues d’une expérience de traçage en milieu poreux insaturé
Appealing models for mass transport in porous media assume that fluid and tracer particles can be trapped during random periods. Among them, the fractional version of the Mobile Immobile Model (f-MIM) was found to agree with several tracer test data recorded in environmental media.This model is equivalent to a stochastic process whose density probability function satisfies an advection-diffusion equation equipped with a supplementary time derivative, of non-integer order. The stochastic process is the hydrodynamic limit of random walks accumulating convective displacements, diffusive displacements, and stagnation steps of random duration distributed by a stable Lévy law having no finite average. Random walk and fractional differential equation provide complementary simulation methods.We describe that methods, in view of having tools for comparing the model with tracer test data consisting of time concentration curves. An other essential step in this direction is finding the four parameters of the fractional equation which make its solutions fit at best given sets of such data. Hence, we also present an inversion method adapted to the f-MIM. This method is based on Laplace transform. It exploits the link between model's parameters and Laplace transformed solutions to f-MIM equation. The link is exact in semi-infinite domains. After having checked inverse method's efficiency for numerical artificial data, we apply it to real tracer test data recorded in non-saturated porous sand
APA, Harvard, Vancouver, ISO, and other styles
21

Bologna, Mauro. "The Dynamic Foundation of Fractal Operators." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4235/.

Full text
Abstract:
The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. This dissertation, in fact, establishes the existence of a striking conflict between densities and trajectories. The third part of this dissertation is devoted to establishing the consequences of the conflict between trajectories and densities in quantum mechanics, and triggers a search for the experimental assessment of spontaneous wave-function collapses. The research work of this dissertation has been the object of several papers and two books.
APA, Harvard, Vancouver, ISO, and other styles
22

Pathak, Nimishaben Shailesh. "Lyapunov-type inequality and eigenvalue estimates for fractional problems." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1249.

Full text
Abstract:
In this work, we establish the Lyapunov-type inequalities for the fractional boundary value problems with Hilfer derivative for different boundary conditions. We apply this inequality to fractional eigenvalue problems and prove one of the important results of real zeros of certain Mittag-Leffler functions and improve the bound of the eigenvalue using the Cauchy-Schwarz inequality and Semi-maximum norm. We extend it for higher order cases.
APA, Harvard, Vancouver, ISO, and other styles
23

Coja, Michael. "Effective vibro-acoustical modelling of rubber isolators." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hartter, Beverly Jo Dossey John A. "Concept image and concept definition for the topic of the derivative." Normal, Ill. Illinois State University, 1995. http://wwwlib.umi.com/cr/ilstu/fullcit?p9603516.

Full text
Abstract:
Thesis (Ph. D.)--Illinois State University, 1995.
Title from title page screen, viewed May 2, 2006. Dissertation Committee: John A. Dossey (chair), Stephen H. Friedberg, Beverly S. Rich, Kenneth Strand, Jane O. Swafford. Includes bibliographical references (leaves 93-97) and abstract. Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
25

Ito, Yu. "Rough path theory via fractional calculus." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chalk, Carl. "Nonlinear evolutionary equations in Banach spaces with fractional time derivative." Thesis, University of Hull, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Malaikah, Honaida Muhammed S. "Stochastic volatility models and memory effect." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/stochastic-volatility-models-and-mempry-effect(424f6c71-a0e7-44ba-afbb-cc5f74ae075c).html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nenad, Grahovac. "Анализа дисипације енергије у проблемима судара два или више тела." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2011. http://dx.doi.org/10.2298/NS20111208GRAHOVAC.

Full text
Abstract:
Анализиран је судар два тела као и дисипација енергије укључена кроз механизам сувог трења моделираног неглатком вишевредносном функцијом и кроз деформацију вискоеластичног штапа чији модел укључује фракционе изводе. Проблем судара два тела је приказан у форми Кошијевог проблема који припада класи неглатких вишевредносних диференцијалних једначина произвољног реалногреда. Кошијев проблем је решен нумеричким поступком заснованим на Тарнеровом алгоритму. Испитано је кретање система и дисипација енергије за разне вредности улазних параметара. Показано је да се уведене методе могу применити и на проблем судара три тела.
Analiziran je sudar dva tela kao i disipacija energije uključena kroz mehanizam suvog trenja modeliranog neglatkom viševrednosnom funkcijom i kroz deformaciju viskoelastičnog štapa čiji model uključuje frakcione izvode. Problem sudara dva tela je prikazan u formi Košijevog problema koji pripada klasi neglatkih viševrednosnih diferencijalnih jednačina proizvoljnog realnogreda. Košijev problem je rešen numeričkim postupkom zasnovanim na Tarnerovom algoritmu. Ispitano je kretanje sistema i disipacija energije za razne vrednosti ulaznih parametara. Pokazano je da se uvedene metode mogu primeniti i na problem sudara tri tela.
Impact of two bodies was analyzed as well as energy dissipation, which was included through dry friction phenomena modelled by a set-valued function, and through deformation of a viscoelastic rod modelled by fractional derivatives. The impact problem was presented in the form of the Cauchy problem that belongs to a class of set-valued fractional differential equations. The Cauchy problem was solved by the numerical procedure based on Turner’s algorithm. Behaviour and energy dissipation of the system was investigated for different values of input parameters. It was shown that suggested procedure can be applied on the problem of impact of three bodies.
APA, Harvard, Vancouver, ISO, and other styles
29

Chang, Tsu-Sheng. "Seismic Response of Structures with Added Viscoelastic Dampers." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/29915.

Full text
Abstract:
Several passive energy dissipation devices have been implemented in practice as the seismic protective systems to mitigate structural damage caused by earthquakes. The solid viscoelastic dampers are among such passive energy dissipation systems. To examine the response reducing effectiveness of these dampers, it is necessary that engineers are able to conduct response analysis of structures installed with added dampers accurately and efficiently. The main objective of this work, therefore, is to develop formulations that can be effectively used with various models of the viscoelastic dampers to calculate the seismic response of a structure-damper system. To incorporate the mechanical effect from VE dampers in the structural dynamic design, it is important to use a proper force-deformation model to correctly describe the frequency dependence of the damper. The fractional derivative model and the general linear model are capable of capturing the frequency dependence of viscoelastic materials accurately. In our research, therefore, we have focused on the development of systematic procedures for calculating the seismic response for these models. For the fractional derivative model, we use the G1 and L1 algorithms to derive various numerical schemes for solving the fractional differential equations for earthquake motions described by acceleration time histories at discrete time points. For linear systems, we also develop a modal superposition method for this model of the damper. This superposition approach can be implemented to obtain the response time history for seismic input defined by the ground acceleration time history. For random ground motion that is described stochastically by the spectral density function, we derive an expression based on random vibration analysis to compute the mean square response of the system. It is noted that the numerical computations involved with the fractional derivative model can be complicated and cumbersome. To alleviate computation difficulty, we explore the use of a general linear model with Kelvin chain analog as a physical representation of the damper properties. The parameters in the model are determined through a curve fitting optimization process. To simplify the analytical work, a self-adjoint system of state equations are formulated by introducing auxiliary displacements for the internal elements in the Kelvin chain. This self-adjoint system can then be solved by using the modal superposition method, which can be extended to develop a response spectrum approach to calculate the seismic design response for the structural system for seismic inputs defined by design ground response spectra. Numerical studies are carried out to demonstrate the applicability of these formulations. Results show that all the proposed approaches provide accurate response values, and the response reduction effects of the viscoelastic dampers can be evaluated to assess their performance using these models and methods. However, the use of a general linear model of the damper is the most efficient. It can capture frequency dependence of the storage and loss moduli as well as the fractional derivative model. The calculation of the response by direct numerical integration of the equations of motion or through the use of the modal superposition approach is significantly simplified, and response spectrum formulation for the calculation of seismic response of design interest can be conveniently formulated.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
30

Amsheri, Somia M. A. "Fractional calculus operator and its applications to certain classes of analytic functions. A study on fractional derivative operator in analytic and multivalent functions." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6320.

Full text
Abstract:
The main object of this thesis is to obtain numerous applications of fractional derivative operator concerning analytic and -valent (or multivalent) functions in the open unit disk by introducing new classes and deriving new properties. Our finding will provide interesting new results and indicate extensions of a number of known results. In this thesis we investigate a wide class of problems. First, by making use of certain fractional derivative operator, we define various new classes of -valent functions with negative coefficients in the open unit disk such as classes of -valent starlike functions involving results of (Owa, 1985a), classes of -valent starlike and convex functions involving the Hadamard product (or convolution) and classes of -uniformly -valent starlike and convex functions, in obtaining, coefficient estimates, distortion properties, extreme points, closure theorems, modified Hadmard products and inclusion properties. Also, we obtain radii of convexity, starlikeness and close-to-convexity for functions belonging to those classes. Moreover, we derive several new sufficient conditions for starlikeness and convexity of the fractional derivative operator by using certain results of (Owa, 1985a), convolution, Jack¿s lemma and Nunokakawa¿ Lemma. In addition, we obtain coefficient bounds for the functional of functions belonging to certain classes of -valent functions of complex order which generalized the concepts of starlike, Bazilevi¿ and non-Bazilevi¿ functions. We use the method of differential subordination and superordination for analytic functions in the open unit disk in order to derive various new subordination, superordination and sandwich results involving the fractional derivative operator. Finally, we obtain some new strong differential subordination, superordination, sandwich results for -valent functions associated with the fractional derivative operator by investigating appropriate classes of admissible functions. First order linear strong differential subordination properties are studied. Further results including strong differential subordination and superordination based on the fact that the coefficients of the functions associated with the fractional derivative operator are not constants but complex-valued functions are also studied.
APA, Harvard, Vancouver, ISO, and other styles
31

Amsheri, Somia Muftah Ahmed. "Fractional calculus operator and its applications to certain classes of analytic functions : a study on fractional derivative operator in analytic and multivalent functions." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6320.

Full text
Abstract:
The main object of this thesis is to obtain numerous applications of fractional derivative operator concerning analytic and ρ-valent (or multivalent) functions in the open unit disk by introducing new classes and deriving new properties. Our finding will provide interesting new results and indicate extensions of a number of known results. In this thesis we investigate a wide class of problems. First, by making use of certain fractional derivative operator, we define various new classes of ρ-valent functions with negative coefficients in the open unit disk such as classes of ρ-valent starlike functions involving results of (Owa, 1985a), classes of ρ-valent starlike and convex functions involving the Hadamard product (or convolution) and classes of κ-uniformly ρ-valent starlike and convex functions, in obtaining, coefficient estimates, distortion properties, extreme points, closure theorems, modified Hadmard products and inclusion properties. Also, we obtain radii of convexity, starlikeness and close-to-convexity for functions belonging to those classes. Moreover, we derive several new sufficient conditions for starlikeness and convexity of the fractional derivative operator by using certain results of (Owa, 1985a), convolution, Jack's lemma and Nunokakawa' Lemma. In addition, we obtain coefficient bounds for the functional |αρ+2-θα²ρ+1| of functions belonging to certain classes of p-valent functions of complex order which generalized the concepts of starlike, Bazilevič and non-Bazilevič functions. We use the method of differential subordination and superordination for analytic functions in the open unit disk in order to derive various new subordination, superordination and sandwich results involving the fractional derivative operator. Finally, we obtain some new strong differential subordination, superordination, sandwich results for ρ-valent functions associated with the fractional derivative operator by investigating appropriate classes of admissible functions. First order linear strong differential subordination properties are studied. Further results including strong differential subordination and superordination based on the fact that the coefficients of the functions associated with the fractional derivative operator are not constants but complex-valued functions are also studied.
APA, Harvard, Vancouver, ISO, and other styles
32

Fino, Ahmad. "Contributions aux problèmes d'évolution." Phd thesis, Université de La Rochelle, 2010. http://tel.archives-ouvertes.fr/tel-00437141.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'étude de trois équations aux dérivées partielles et d'évolution non-locales en espace et en temps. Les solutions de ces trois solutions peuvent exploser en temps fini. Dans une première partie de cette thèse, nous considérons l'équation de la chaleur nonlinéaire avec une puissance fractionnaire du laplacien, et obtenons notamment que, dans le cas d'exposant sur-critique, le comportement asymptotique de la solution lorsque $t\rightarrow+\infty$ est déterminé par le terme de diffusion anormale. D'autre part, dans le cas d'exposant sous-critique, l'effet du terme non-linéaire domine. Dans une deuxième partie, nous étudions une équation parabolique avec le laplacien fractionnaire et un terme non-linéaire et non-local en temps. On montre que la solution est globale dans le cas sur-critique pour toute donnée initiale ayant une mesure assez petite, tandis que dans le cas sous-critique, on montre que la solution explose en temps fini $T_{\max}>0$ pour toute condition initiale positive et non-triviale. Dans ce dernier cas, on cherche le comportement de la norme $L^1$ de la solution en précisant le taux d'explosion lorsque $t$ s'approche du temps d'explosion $T_{\max}.$ Nous cherchons encore les conditions nécessaires à l'existence locale et globale de la solution. Une toisième partie est consacré à une généralisation de la deuxième partie au cas de systèmes $2\times 2$ avec le laplacien ordinaire. On étudie l'existence locale de la solution ainsi qu'un résultat sur l'explosion de la solution avec les mêmes propriétés étudiées dans le troisième chapitre. Dans la dernière partie, nous étudions une équation hyperbolique dans $\mathbb{R}^N,$ pour tout $N\geq2,$ avec un terme non-linéaire non-local en temps. Nous obtenons un résultat d'existence locale de la solution sous des conditions restrictives sur les données initiales, la dimension de l'espace et les exposants du terme non-linéaire. De plus on obtient, sous certaines conditions sur les exposants, que la solution explose en temps fini, pour toute condition initiale ayant de moyenne strictement positive.
APA, Harvard, Vancouver, ISO, and other styles
33

Malik, Salman Amin. "Contributions aux équations aux dérivées fractionnaires et au traitement d'images." Phd thesis, Université de La Rochelle, 2012. http://tel.archives-ouvertes.fr/tel-00825874.

Full text
Abstract:
Dans cette thèse, nous nous intéressons aux équations aux dérivées fractionnaires et leurs applications au traitement d'images. Une attention particulière a été apportée à un système non linéaire d'équations différentielles fractionnaires. En particulier, nous avons étudié les propriétés qualitatives des solutions d'un système non linéaire d'équations différentielles fractionnaires qui explosent en temps fini. L'existence des solutions locales pour le système, le profil des solutions qui explosent en temps fini sont présentés. Nous étudierons le problème inverse pour l'équation de diffusion linéaire en une dimension et en deux dimensions. Nous sommes intéressés par trouver un terme source inconnu d'une équation de diffusion non locale. Les conditions aux limites considérées sont non locales et le problème spectral est non auto-adjoint. L'existence et l'unicité de la solution du problème inverse sont présentées.D'autre part, nous proposons un modèle basé sur l'équation de la chaleur linéaire avec une dérivée fractionnaire en temps pour le débruitage d'images numériques. L'approche utilise une technique de pixel par pixel, ce qui détermine la nature du filtre. En contraste avec certain modèles basés sur les équations aux dérivées partielles pour le débruitage de l'image, le modèle proposé est bien posé et le schéma numérique est convergent. Une amélioration de notre modèle proposé est suggéré.
APA, Harvard, Vancouver, ISO, and other styles
34

Joseph, Claire. "Sur le contrôle optimal des équations de diffusion et onde fractionnaires en temps à données incomplètes." Thesis, Antilles, 2017. http://www.theses.fr/2017ANTI0164/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons a la résolution de problèmes de contrôle optimal associés a des équations de diffusion et onde fractionnaires en temps et a données incomplètes, ou les dérivées sont prises au sens de Riemann-Liouville
In this thesis, we are interested in the résolution of optimal control problems associated to fractional diffusion-wave equations in time with incomplete data, and where derivatives are understood in Riemann-Liouville sense
APA, Harvard, Vancouver, ISO, and other styles
35

Kartci, Aslihan. "Analogová implementace prvků neceločíselného řádu a jejich aplikace." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-402652.

Full text
Abstract:
S pokroky v teorii počtu neceločíselného řádu a také s rozšířením inženýrských aplikací systémů neceločíselného řádu byla značná pozornost věnována analogové implementaci integrátorů a derivátorů neceločíselného řádu. Je to dáno tím, že tento mocný matematický nástroj nám umožňuje přesněji popsat a modelovat fenomén reálného světa ve srovnání s klasickými „celočíselnými“ metodami. Navíc nám jejich dodatečný stupeň volnosti umožňuje navrhovat přesnější a robustnější systémy, které by s konvenčními kondenzátory bylo nepraktické nebo nemožné realizovat. V předložené disertační práci je věnována pozornost širokému spektru problémů spojených s návrhem analogových obvodů systémů neceločíselného řádu: optimalizace rezistivně-kapacitních a rezistivně-induktivních typů prvků neceločíselného řádu, realizace aktivních kapacitorů neceločíselného řádu, analogová implementace integrátoru neceločíselného řádů, robustní návrh proporcionálně-integračního regulátoru neceločíselného řádu, výzkum různých materiálů pro výrobu kapacitorů neceločíselného řádu s ultraširokým kmitočtovým pásmem a malou fázovou chybou, možná realizace nízkofrekvenčních a vysokofrekvenčních oscilátorů neceločíselného řádu v analogové oblasti, matematická a experimentální studie kapacitorů s pevným dielektrikem neceločíselného řádu v sériových, paralelních a složených obvodech. Navrhované přístupy v této práci jsou důležitými faktory v rámci budoucích studií dynamických systémů neceločíselného řádu.
APA, Harvard, Vancouver, ISO, and other styles
36

Lassoued, Rafika. "Contributions aux équations d'évolution frac-différentielles." Thesis, La Rochelle, 2016. http://www.theses.fr/2016LAROS001/document.

Full text
Abstract:
Dans cette thèse, nous nous sommes intéressés aux équations différentielles fractionnaires. Nous avons commencé par l'étude d'une équation différentielle fractionnaire en temps. Ensuite, nous avons étudié trois systèmes fractionnaires non linéaires ; le premier avec un Laplacien fractionnaire et les autres avec une dérivée fractionnaire en temps définie au sens de Caputo. Dans le premier chapitre, nous avons établi les propriétés qualitatives de la solution d'une équation différentielle fractionnaire en temps qui modélise l'évolution d'une certaine espèce. Plus précisément, l'existence et l'unicité de la solution globale sont démontrées pour certaines valeurs de la condition initiale. Dans ce cas, nous avons obtenu le comportement asymptotique de la solution en t^α. Sous une autre condition sur la donnée initiale, la solution explose en temps fini. Le profil de la solution et l'estimation du temps d'explosion sont établis et une confirmation numérique de ces résultats est présentée. Les chapitres 4, 5 et 6 sont consacrés à l'étude théorique de trois systèmes fractionnaires : un système de la diffusion anormale qui décrit la propagation d'une épidémie infectieuse de type SIR dans une population confinée, le Brusselator avec une dérivée fractionnaire en temps et un système fractionnaire en temps avec une loi de balance. Pour chaque système, on présente l'existence globale et le comportement asymptotique des solutions. L'existence et l'unicité de la solution locale pour les trois systèmes sont obtenues par le théorème de point fixe de Banach. Cependant, le comportement asymptotique est établi par des techniques différentes : le comportement asymptotique de la solution du premier système est démontré en se basant sur les estimations du semi-groupe et le théorème d'injection de Sobolev. Concernant le Brusselator fractionnaire, la technique utilisée s'appuie sur un argument de feedback. Finalement, un résultat de régularité maximale est utilisé pour l'étude du dernier système
In this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system
APA, Harvard, Vancouver, ISO, and other styles
37

Dannawi, Ihab. "Contributions aux équations d'évolutions non locales en espace-temps." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS007/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'étude de quatre équations d'évolution non-locales. Les solutions de ces quatre équations peuvent exploser en temps fini. Dans la théorie des équations d'évolution non-linéaires, une solution est qualifiée de globale si elle est définie pour tout temps positif. Au contraire, si une solution existe seulement sur un intervalle de temps [0; T) borné, elle est dite locale. Dans ce dernier cas et quand le temps maximal d'existence est relié à une alternative d'explosion, on dit aussi que la solution explose en temps fini. Dans un premier travail, nous considérons l'équation de Schrödinger non-linéaire avec une puissance fractionnaire du laplacien, et nous obtenons l'explosion de la solution en temps fini Tmax > 0 pour toute condition initiale positive et non-triviale dans le cas d'exposant sous-critique. Ensuite, nous étudions une équation des ondes amorties avec un potentiel d'espace-temps et un terme non-linéaire et non-local en temps. Nous obtenons un résultat d'existence locale d'une solution dans l'espace d'énergie sous des conditions restrictives sur les données initiales, la dimension de l'espace et la croissance du terme non-linéaire. De plus, nous obtenons l'explosion de la solution en temps fini pour toute condition initiale de moyenne strictement positive. De plus, nous étudions un problème de Cauchy pour l'équation d'évolution avec un p- Laplacien avec une non linéarité non-locale en temps. Dans ce cadre, nous nous intéressons à l'étude de l'existence locale d'une solution de cette équation ainsi qu'un résultat de non-existence de solution globale. Finalement, nous étudions l'intervalle maximal d'existence des solutions de l'équation des milieux poreux avec un terme non-linéaire non-local en temps
In this thesis, we study four non-local evolution equations. The solutions of these four equations can blow up in finite time. In the theory of nonlinear evolution equations, a solution is qualified as global if it isdefined for any time. Otherwise, if a solution exists only on a bounded interval [0; T), it is called local solution. In this case and when the maximum time of existence is related to a blow up alternative, we say that the solution blows up in finite time. First, we consider the nonlinear Schröodinger equation with a fractional power of the Laplacien operator, and we get a blow up result in finite time Tmax > 0 for any non-trivial non-negative initial condition in the case of sub-critical exponent. Next, we study a damped wave equation with a space-time potential and a non-local in time non-linear term. We obtain a result of local existence of a solution in the energy space under some restrictions on the initial data, the dimension of the space and the growth of nonlinear term. Additionally, we get a blow up result of the solution in finite time for any initial condition positive on average. In addition, we study a Cauchy problem for the evolution p-Laplacien equation with nonlinear memory. We study the local existence of a solution of this equation as well as a result of non-existence of global solution. Finally, we study the maximum interval of existence of solutions of the porous medium equation with a nonlinear non-local in time term
APA, Harvard, Vancouver, ISO, and other styles
38

Sjöberg, Mattias. "On dynamic properties of rubber isolators." Doctoral thesis, KTH, Vehicle Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3466.

Full text
Abstract:

This work aims at enhancing the understanding and to provideimproved models of the dynamic behavior of rubber vibrationisolators which are widely used in mechanical systems.Initially, a time domainmodel relating compressions tocomponent forces accounting for preload effects, frequency anddynamic amplitude dependence is presented. The problem ofsimultaneously modelling the elastic, viscoelastic and frictionforces are removed by additively splitting them, where theelastic force response is modelled either by a fully linear ora nonlinear shape factor based approach, displaying resultsthat agree with those of a neo-Hookean hyperelastic isolatorunder a long term precompression. The viscoelastic force ismodelled by a fractional derivative element, while the frictionforce governs from a generalized friction element displaying asmoothed Coulomb force. This is a versatile one-dimensionalcomponent model effectively using a small number of parameterswhile exhibiting a good resemblance to measured isolatorcharacteristics. Additionally, the nonlinear excitationeffects on dynamic stiffness and damping of a filled rubberisolator are investigated through measurements. It is shownthat the well-known Payne effect - where stiffness is high forsmall excitation amplitudes and low for large amplitudes whiledamping displays a maximum at intermediate amplitudes -evaluated at a certain frequency, is to a large extentinfluenced by the existence of additional frequency componentsin the signal. Finally, a frequency, temperature and preloaddependent dynamic stiffness model is presented covering theranges from 20 to 20 000 Hz, -50 to +50 °C at 0 to 20 %precompression. A nearly incompressible, thermo-rheologicallysimple material model is adopted displaying viscoelasticitythrough a time - strain separable relaxation tensor with asingle Mittag-Leffler function embodying its time dependence.This fractional derivative based function successfully fitsmaterial properties throughout the whole audible frequencyrange. An extended neo-Hookean strain energy function, beingdirectly proportional to the temperature and density, isapplied for the finite deformation response with componentproperties solved by a nonlinear finite element procedure. Thepresented work is thus believed to enlighten workingconditions’impact on the dynamic properties of rubbervibration isolators, while additionally taking some of thesemost important features into account in the presentedmodels.

APA, Harvard, Vancouver, ISO, and other styles
39

Miodrag, Žigić. "Oscilacije konstrukcije sa pasivnim prigušivačima frakcionog tipa i suvim trenjem pri seizmičkom dejstvu." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2012. http://dx.doi.org/10.2298/NS20120113ZIGIC.

Full text
Abstract:
Proučeno je oscilatorno kretanje i disipacija energije stuba napravljenogod nekoliko krutih blokova, koji pri horizontalnom seizmičkom dejstvumogu da klize jedan po drugom. Pored međusobnog kontakta sa trenjem, koje jemodelirano neglatkom viševrednosnom funkcijom, veze između blokovasadrže i viskoelastične elemente, čije konstitutivne relacije uključujufrakcione izvode, kao i ograničenja na koeficijente koja slede izKlauzius-Dijemove nejednakosti. Postavljeni Košijev problem predstavljauopštenje klasičnog problema ponašanja konstrukcija pod dejstvomseizmičkog opterećenja, jer objedinjuje izvode proizvoljnog realnog redasa teorijom neglatkih viševrednosnih funkcija. Predložena je numeričkaprocedura za rešavanje postavljenog problema.
Seismic response and energy dissipation of a column made of several rigid blocks, which can slide along each other, was considered. Besides friction contact, which was modeled by a set valued function, viscoelastic elements whose constitutive equations include fractional derivatives as well as restrictions on the coefficients that follow from Clausius-Duhem inequality are present in connections between blocks. The posed Caushy problem represents the generalization of a classical problem of seismic response because it merges fractional derivatives with the theory of set valued functions. The numerical procedure for solving the problem was suggested.
APA, Harvard, Vancouver, ISO, and other styles
40

Rakotonasy, Solonjaka Hiarintsoa. "Modèle fractionnaire pour la sous-diffusion : version stochastique et edp." Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00839892.

Full text
Abstract:
Ce travail a pour but de proposer des outils visant 'a comparer des résultats exp'erimentaux avec des modèles pour la dispersion de traceur en milieu poreux, dans le cadre de la dispersion anormale.Le "Mobile Immobile Model" (MIM) a été à l'origine d'importants progrès dans la description du transport en milieu poreux, surtout dans les milieux naturels. Ce modèle généralise l'quation d'advection-dispersion (ADE) e nsupposant que les particules de fluide, comme de solut'e, peuvent ˆetre immo-bilis'ees (en relation avec la matrice solide) puis relˆachées, le piégeage et le relargage suivant de plus une cin'etique d'ordre un. Récemment, une version stochastique de ce modèle a 'eté proposée. Malgré de nombreux succès pendant plus de trois décades, le MIM reste incapable de repr'esenter l''evolutionde la concentration d'un traceur dans certains milieux poreux insaturés. Eneffet, on observe souvent que la concentration peut d'ecroˆıtre comme unepuissance du temps, en particulier aux grands temps. Ceci est incompatible avec la version originale du MIM. En supposant une cinétique de piégeage-relargage diff'erente, certains auteurs ont propos'e une version fractionnaire,le "fractal MIM" (fMIM). C'est une classe d''equations aux d'eriv'ees par-tielles (e.d.p.) qui ont la particularit'e de contenir un op'erateur int'egral li'e'a la variable temps. Les solutions de cette classe d'e.d.p. se comportentasymptotiquement comme des puissances du temps, comme d'ailleurs cellesde l''equation de Fokker-Planck fractionnaire (FFPE). Notre travail fait partie d'un projet incluant des exp'eriences de tra¸cageet de vélocimétrie par R'esistance Magn'etique Nucl'eaire (RMN) en milieuporeux insatur'e. Comme le MIM, le fMIM fait partie des mod'eles ser-vant 'a interpréter de telles exp'eriences. Sa version "e.d.p." est adapt'eeaux grandeurs mesur'ees lors d'exp'eriences de tra¸cage, mais est peu utile pour la vélocimétrie RMN. En effet, cette technique mesure la statistiquedes d'eplacements des mol'ecules excit'ees, entre deux instants fixés. Plus précisément, elle mesure la fonction caractéristique (transform'ee de Fourier) de ces d'eplacements. Notre travail propose un outil d'analyse pour ces expériences: il s'agit d'une expression exacte de la fonction caract'eristiquedes d'eplacements de la version stochastique du mod'ele fMIM, sans oublier les MIM et FFPE. Ces processus sont obtenus 'a partir du mouvement Brown-ien (plus un terme convectif) par des changement de temps aléatoires. Ondit aussi que ces processus sont des mouvement Browniens, subordonnéspar des changements de temps qui sont eux-mˆeme les inverses de processusde L'evy non d'ecroissants (les subordinateurs). Les subordinateurs associés aux modèles fMIM et FFPE sont des processus stables, les subordinateursassoci'es au MIM sont des processus de Poisson composites. Des résultatsexp'erimenatux tr'es r'ecents on sugg'er'e d''elargir ceci 'a des vols de L'evy (plusg'en'eraux que le mouvement Brownien) subordonnés aussi.Le lien entre les e.d.p. fractionnaires et les mod'eles stochastiques pourla sous-diffusion a fait l'objet de nombreux travaux. Nous contribuons 'ad'etailler ce lien en faisant apparaˆıtre les flux de solut'e, en insistant sur une situation peu 'etudiée: nous examinons le cas o'u la cinétique de piégeage-relargage n'est pas la mˆeme dans tout le milieu. En supposant deux cinétiques diff'erentes dans deux sous-domaines, nous obtenons une version du fMIMavec un opérateur intégro-diff'erentiel li'e au temps, mais dépendant de la position.Ces r'esultats sont obtenus au moyen de raisonnements, et sont illustrés par des simulations utilisant la discrétisation d'intégrales fractionnaires etd'e.d.p. ainsi que la méthode de Monte Carlo. Ces simulations sont en quelque sorte des preuves numériques. Les outils sur lesquels elles s'appuient sont présentés aussi.
APA, Harvard, Vancouver, ISO, and other styles
41

Hnaien, Dorsaf. "Equations aux dérivées fractionnaires : propriétés et applications." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS038.

Full text
Abstract:
Notre objectif dans cette thèse est l'étude des équations différentielles non linéaires comportant des dérivées fractionnaires en temps et/ou en espace. Nous nous sommes intéressés dans un premier temps à l'étude de deux systèmes non linéaires d'équations différentielles fractionnaires en temps et/ou en espace, puis à l'étude d'une équation différentielle fractionnaire en temps. Plus exactement pour la première partie, les questions concernant l'existence globale et le comportement asymptotique des solutions d'un système non linéaire d'équations différentielles comportant des dérivées fractionnaires en temps et en espace sont élucidées. Les techniques utilisées reposent sur des estimations obtenues pour les solutions fondamentales et la comparaison de certaines inégalités fractionnaires. Toujours dans la première partie, l'étude d'un système non linéaire d'équations de réaction-diffusion avec des dérivées fractionnaires en espace est abordée. L'existence locale et l'unicité des solutions sont prouvées à l'aide du théorème du point fixe de Banach. Nous montrons que les solutions sont bornées et analysons leur comportement à l'infini. La deuxième partie est consacrée à l'étude d'une équation différentielle fractionnaire non linéaire. Sous certaines conditions sur la donnée initiale, nous montrons que la solution est globale alors que sous d'autres, elle explose en temps fini. Dans ce dernier cas, nous donnons son profil ainsi que des estimations bilatérales du temps d'explosion. Alors que pour la solution globale nous étudions son comportement asymptotique
Our objective in this thesis is the study of nonlinear differential equations involving fractional derivatives in time and/or in space. First, we are interested in the study of two nonlinear time and/or space fractional systems. Our second interest is devoted to the analysis of a time fractional differential equation. More exactly for the first part, the question concerning the global existence and the asymptotic behavior of a nonlinear system of differential equations involving time and space fractional derivatives is addressed. The used techniques rest on estimates obtained for the fundamental solutions and the comparison of some fractional inequalities. In addition, we study a nonlinear system of reaction-diffusion equations with space fractional derivatives. The local existence and the uniqueness of the solutions are proved using the Banach fixed point theorem. We show that the solutions are bounded and analyze their large time behavior. The second part is dedicated to the study of a nonlinear time fractional differential equation. Under some conditions on the initial data, we show that the solution is global while under others, it blows-up in a finite time. In this case, we give its profile as well as bilateral estimates of the blow-up time. While for the global solution we study its asymptotic behavior
APA, Harvard, Vancouver, ISO, and other styles
42

Kadlčík, Libor. "Efektivní použití obvodů zlomkového řádu v integrované technice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432494.

Full text
Abstract:
Integrace a derivace jsou obvykle známy pro celočíselný řád (tj. první, druhý, atd.). Existuje ale zobecnění pro zlomkové (neceločíselné) řády, které lze implementovat pomocí elektronických obvodů zlomkového řádu (případně provést jejich aproximaci) a které poskytuje nový stupeň volnosti pro návrh elektronických obvodů. Obvody zlomkového řádu jsou obvykle aproximovány diskrétními součástkami pomocí RC struktur s velkými rozsahy odporů a kapacit, a tím se jeví nepraktické pro použití v integrovaných obvodech. Tato práce prezentuje implementaci obvodů zlomkového řádu v integerovaných obvodech a jejich praktické využití v této oblasti. Jsou použity prvky se soustředěnými parametry (např. RC žebřík) i prvky s rozprostřenými parametery (např. R-PMOScap, skládající se z nesalicidovaného proužku polykrystalického křemíku nad hradlovým oxidem); je použita pouze technologie typu analogvý CMOS bez dodatečných procesních kroků. Užití obvodů zlomkového řádu bylo demonstrováno realizací několika integrovaných napěťových regulátorů, v nichž obvody zlomkového řádu realizují řízení zlomkového řádu za účelem dosažení silné stejnosměrné regulace a dobré stability regulační smyčky - i bez použití kompenzační nuly nebo příliš vysoké externí kapacity (některé napěťové regulátory dovolují i zatěžovací kapacitou v rozsahu nula až nekonečno).
APA, Harvard, Vancouver, ISO, and other styles
43

Gomes, Arianne Vellasco. "Estrutura eletrônica de cristais : generalização mediante o cálculo fracionário /." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154280.

Full text
Abstract:
Submitted by Arianne Vellasco Gomes (ariannevellasco@gmail.com) on 2018-06-15T18:52:22Z No. of bitstreams: 1 Arianne_Vellasco_Gomes_TESE_POSMAT_2018.pdf: 4211125 bytes, checksum: 16221f3149817fbc6e4db2f2026f2f14 (MD5)
Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-06-18T17:39:32Z (GMT) No. of bitstreams: 1 gomes_av_dr_bauru.pdf: 3510911 bytes, checksum: 2abe98b4f93107bb6dc267a184ebef70 (MD5)
Made available in DSpace on 2018-06-18T17:39:32Z (GMT). No. of bitstreams: 1 gomes_av_dr_bauru.pdf: 3510911 bytes, checksum: 2abe98b4f93107bb6dc267a184ebef70 (MD5) Previous issue date: 2018-04-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Tópicos fundamentais da estrutura eletrônica de materiais cristalinos, são investigados de forma generalizada mediante o Cálculo Fracionário. São calculadas as bandas de energia, as funções de Bloch e as funções de Wannier, para a equação de Schrödinger fracionária com derivada de Riesz. É apresentado um estudo detalhado do caráter não local desse tipo de derivada fracionária. Resolve-se a equação de Schrödinger fracionária para o modelo de Kronig-Penney e estuda-se os efeitos da ordem da derivada e da intensidade do potencial. Verificou-se que, ao passar da derivada de segunda ordem para derivadas fracionárias, o comportamento assintótico das funções de Wannier muda apreciavelmente. Elas perdem o decaimento exponencial, e exibem um decaimento acentuado em forma de potência. Fórmulas simples foram dadas para as caudas das funções de Wannier. A banda de energia mais baixa mostrou-se estar relacionada ao estado ligado de um único poço quântico. Sua função de onda também apresentou decaimento em lei de potência. As bandas de energia superiores mudam de comportamento em função da intensidade do potencial. No caso inteiro, a largura de cada uma dessas bandas diminui. No caso fracionário, diminui inicialmente e depois volta a aumentar, aproximando-se de um valor infinito à medida que a intensidade do potencial tende ao infinito. O grau de localização das funções de Wannier, expresso pelo desvio padrão da posição, mostra um comportamento similar ao da largura das bandas de energia. Além dos cristais perfeitos a Ciência de Materiais estuda cristais com defeito. Os defeitos são responsáveis por muitas propriedades de interesse tecnológico e podem induzir estados localizados. Neste trabalho, calculado o estado localizado de menor energia no modelo de Kronig-Penney fracionário com defeito, mediante método das transformadas de Fourier e das funções de Wannier. Verificou-se que este estado também decai em forma de lei de potência.
Basics topics on the electronic structure of crystalline materials are investigated in a generalized fashion through Fractional Calculus. The energy bands, the Bloch and Wannier functions for the fractional Schr odinger equation with Riesz derivative are calculated. The non-locality of the Riesz fractional derivative is analyzed. The fractional Schr odinger equation is solved for the Kronig-Penney model and the e ects of the derivative order and the potential intensity are studied. It was shown that moving from the integer to the fractional order strongly a ects the asymptotic behavior of the Wannier functions. They lose the exponential decay, gaining a strong power-law decay. Simple formulas have been given for the tails of the Wannier functions. A close relatim between the lowest energy band and the bound state of a single quantum well was found. The wavefunction of the latter decays as a power law. Higher energy bands change their behavior as the periodic potential gets stronger. In the integer case, the width of each one of those bands decreases. In the fractional case, it initially decreases and then increases. The width approaching a nite value as the strength tends to in nity. The degree of localization of the Wannier functions, as expressed by the position standard deviation, behaves similarly to the width of the energy bands. In addition to perfect crystals, Materials Science studies defective crystals. Defects are responsible for many properties of technological interest and can induce localized states. In this work, the localized state of lowest energy in the fractional Kronig-Penney model with defect is calculated through of the Fourier transform method and the Wannier functions. It was shown that is decays as a power law.
APA, Harvard, Vancouver, ISO, and other styles
44

Ossman, Hala. "Etude mathématique de la convergence de la PGD variationnelle dans certains espaces fonctionnels." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS006/document.

Full text
Abstract:
On s’intéresse dans cette thèse à la PGD (Proper Generalized Decomposition), l’une des méthodes de réduction de modèles qui consiste à chercher, a priori, la solution d’une équation aux dérivées partielles sous forme de variables séparées. Ce travail est formé de cinq chapitres dans lesquels on vise à étendre la PGD aux espaces fractionnaires et aux espaces des fonctions à variation bornée, et à donner des interprétations théoriques de cette méthode pour une classe de problèmes elliptiques et paraboliques. Dans le premier chapitre, on fait un bref aperçu sur la littérature puis on présente les notions et outils mathématiques utilisés dans le corps de la thèse. Dans le second chapitre, la convergence des suites des directions alternées (AM) pour une classe de problèmes variationnels elliptiques est étudiée. Sous une condition de non-orthogonalité uniforme entre les itérés et le terme source, on montre que ces suites sont en général bornées et compactes. Alors, si en particulier la suite (AM) converge faiblement alors elle converge fortement et la limite serait la solution du problème de minimisation alternée. Dans le troisième chapitre, on introduit la notion des dérivées fractionnaires au sens de Riemann-Liouville puis on considère un problème variationnel qui est une généralisation d’ordre fractionnaire de l’équation de Poisson. En se basant sur la nature quadratique et la décomposabilité de l’énergie associée, on démontre que la suite PGD progressive converge fortement vers la solution faible de ce problème. Dans le quatrième chapitre, on profite de la structure tensorielle des espaces BV par rapport à la topologie faible étoile pour définir les suites PGD dans ce type d’espaces. La convergence de telle suite reste une question ouverte. Le dernier chapitre est consacré à l’équation de la chaleur d-dimensionnelle, où on discrétise en temps puis à chaque pas de temps on cherche la solution de l’équation elliptique en utilisant la PGD. On montre alors que la fonction affine par morceaux en temps obtenue à partir des solutions construites en utilisant la PGD converge vers la solution faible de l’équation
In this thesis, we are interested in the PGD (Proper Generalized Decomposition), one of the reduced order models which consists in searching, a priori, the solution of a partial differential equation in a separated form. This work is composed of five chapters in which we aim to extend the PGD to the fractional spaces and the spaces of functions of bounded variation and to give theoretical interpretations of this method for a class of elliptic and parabolic problems. In the first chapter, we give a brief review of the litterature and then we introduce the mathematical notions and tools used in this work. In the second chapter, the convergence of rank-one alternating minimisation AM algorithms for a class of variational linear elliptic equations is studied. We show that rank-one AM sequences are in general bounded in the ambient Hilbert space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one (AM) sequence is weakly convergent then it converges strongly and the common limit is a solution of the alternating minimization problem. In the third chapter, we introduce the notion of fractional derivatives in the sense of Riemann-Liouville and then we consider a variational problem which is a generalization of fractional order of the Poisson equation. Basing on the quadratic nature and the decomposability of the associated energy, we prove that the progressive PGD sequence converges strongly towards the weak solution of this problem. In the fourth chapter, we benefit from tensorial structure of the spaces BV with respect to the weak-star topology to define the PGD sequences in this type of spaces. The convergence of this sequence remains an open question. The last chapter is devoted to the d-dimensional heat equation, we discretize in time and then at each time step one seeks the solution of the elliptic equation using the PGD. Then, we show that the piecewise linear function in time obtained from the solutions constructed using the PGD converges to the weak solution of the equation
APA, Harvard, Vancouver, ISO, and other styles
45

Vigué, Pierre. "Solutions périodiques et quasi-périodiques de systèmes dynamiques d'ordre entier ou fractionnaire : applications à la corde frottée." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0306/document.

Full text
Abstract:
L'étude par continuation des solutions périodiques et quasi-périodiques est appliquée à plusieurs modèles issus du violon. La continuation pour un modèle à un degré de liberté avec friction régularisée permet de montrer la préservation, par rapport à la friction de Coulomb, des bifurcations de cycle limite (une vitesse maximale et une force minimale permettant le mouvement de Helmholtz) et de propriétés globales de la branche de solution (croissance de l'amplitude avec la vitesse, décroissance de la fréquence avec la force normale). L'équilibrage harmonique est évalué sur la friction régularisée et a des propriétés de convergence intéressantes (erreur faible, monotone, à décroissance rapide). La continuation sur un modèle à deux modes donne accès aux solutions de registres supérieurs, dont la stabilité coïncide avec l'expérience. La valeur retenue pour l'inharmonicité peut modifier fortement le diagramme de bifurcation. Une nouvelle méthode de continuation des solutions quasi-périodiques est proposée. Elle associe l'EH étendu à deux pulsations avec la Méthode Asymptotique Numérique. Une attention particulière est portée à la rapidité des calculs, face à la croissance rapide de la taille des systèmes à inverser. Un modèle de friction prenant en compte la température au point de contact est reformulé à l'aide d'une dérivée fractionnaire. Nous proposons une méthode de continuation de solutions périodiques de systèmes contenant des dérivées ou intégrales fractionnaires. Nous établissons une condition suffisante pour que les cycles asymptotiques du cadre causal (Caputo) soient solutions du cadre que nous avons choisi
The continuation of periodic and quasi-periodic solutions is performed on several models derived from the violin. The continuation for a one degree-of-freedom model with a regularized friction shows, compared with Coulomb friction, the persistence of limit cycle bifurcations (a maximum bow speed and a minimum normal force allowing Helmholtz motion) and of global properties of the solution branch (increase of amplitude with respect to the bow speed, decrease of frequency with respect to the normal force). The Harmonic Balance Method is assessed on this regularized friction system and shows interesting convergence properties (the error is low, monotone and rapidly decreasing). For two modes the continuation shows higher register solutions with a plausible stability. A stronger inharmonicity can greatly modify the bifurcation diagram. A new method is proposed for the continuation of quasi-periodic solutions. It couples a two-pulsations HBM with the Asymptotic Numerical Method. We have taken great care to deal efficiently with large systems of unknowns. A model of friction that takes into account temperature of the contact zone is reformulated with a fractional derivative. We then propose a method of continuation of periodic solutions for differential systems that contain fractional operators. Their definition is usually restricted to causal solutions, which prevents the existence of periodic solutions. Having chosen a specific definition of fractional operators to avoid this issue we establish a sufficient condition on asymptotically attractive cycles in the causal framework to be solutions of our framework
APA, Harvard, Vancouver, ISO, and other styles
46

Perakis, Nikolaos. "Separation et detection selective des composes soufres dans les fractions lourdes des petroles : geochimie des benzo (b) thiophenes." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13093.

Full text
Abstract:
Analyse et dosage des composes soufres presents dans une coupe lourde du petrole aramco 90 par chromatographie gazeuse avec detection soit par photometrie de flamme soit par spectrometrie de masse haute resolution. Etude comparative des methodes d'analyse. Etude des composes soufres dans des echantillons de petrole de rozel point et de schiste bitumineux de timahdit grace a l'identification par synthese de nouvelles familles d'alkylbenzo (b) thiophenes
APA, Harvard, Vancouver, ISO, and other styles
47

Akil, Mohammad. "Quelques problèmes de stabilisation directe et indirecte d’équations d’ondes par des contrôles de type fractionnaire frontière ou de type Kelvin-Voight localisé." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0043/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude de la stabilisation directe et indirecte de différents systèmes d’équations d’ondes avec un contrôle frontière de type fractionnaire ou un contrôle local viscoélastique de type Kelvin-Voight. Nous considérons, d’abord, la stabilisation de l’équation d’ondes multidimensionnel avec un contrôle frontière fractionnaire au sens de Caputo. Sous des conditions géométriques optimales, nous établissons un taux de décroissance polynomial de l’énergie de système. Ensuite, nous nous intéressons à l’étude de la stabilisation d’un système de deux équations d’ondes couplées via les termes de vitesses, dont une seulement est amortie avec contrôle frontière de type fractionnaire au sens de Caputo. Nous montrons différents résultats de stabilités dans le cas 1-d et N-d. Finalement, nous étudions la stabilité d’un système de deux équations d’ondes couplées avec un seul amortissement viscoélastique localement distribué de type Kelvin-Voight
This thesis is devoted to study the stabilization of the system of waves equations with one boundary fractional damping acting on apart of the boundary of the domain and the stabilization of a system of waves equations with locally viscoelastic damping of Kelvin-Voight type. First, we study the stability of the multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Second, we study the stability of the system of coupled onedimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Next, we study the stability of the system of coupled multi-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Finally, we study the stability of the multidimensional waves equations with locally viscoelastic damping of Kelvin-Voight is applied for one equation around the boundary of the domain
APA, Harvard, Vancouver, ISO, and other styles
48

Denis, Yvan. "Modélisation en grandes déformations du comportement hystérétique des renforts de composites : Application à l'estampage incrémental." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI098.

Full text
Abstract:
Les matériaux composites connaissent une croissance exponentielle d'utilisation que ce soit dans le domaine de l'aérospatial, l'aéronautique, l'automobile ou encore le sport. Cette évolution significative s'explique notamment par les excellentes propriétés mécaniques que propose ce genre de matériaux. De plus, le ratio caractéristiques/poids est extrêmement favorable à ces derniers puisqu'ils restent plus légers que les matériaux usuellement employés par le passé. Cependant, ils sont aussi extrêmement coûteux et moyennement maîtrisés comparés aux connaissances scientifiques qui existent pour les matériaux cristallins. L'outil de simulation numérique est donc devenu partie intégrante de l'amélioration des procédés de mise en forme, ce qui nécessite, entre autres, l'élaboration de modèles mécaniques. Jusqu'à maintenant, compte tenu des stratégies d'emboutissage utilisant un seul couple poinçon/matrice, les chargements étaient supposés monotones et donc les lois de comportement associées étaient hyperélastiques ou viscoélastiques. Toutefois, étant donné que la demande industrielle ne cesse de croître et la complexité des géométries demandées aussi, nous proposons au travers des travaux présentés ici, des approches innovantes et originales comme la mise en forme incrémentale et la gestion des conditions aux limites. Ces nouvelles approches induisent des variations de chargement en cisaillement ou en flexion et les modèles hyperélastiques ne sont donc plus suffisamment riches pour correctement modéliser les procédés d'estampage. L'étude du comportement hystérétique étant nouvelle pour les matériaux composites, les travaux présentés se focalisent alors sur les renforts secs. C'est ainsi qu'une approche expérimentale a été réalisée afin de connaître la réaction du tissé soumis à ce type de chargements non monotones. Puis, des modèles dissipatifs hystérétiques ont été établis en vue de les intégrer dans un logiciel de calcul par éléments finis. Enfin, des simulations numériques avec comparaisons expérimentales sont proposées, basiques au début pour valider les modèles puis plus complexes pour montrer l'intérêt de telles modélisations et de telles stratégies
Composite materials are experiencing exponential growth in use in the aerospace, aeronautics, automotive and sports sectors. This significant development is mainly due to the excellent mechanical properties offered by this type of material. In addition, the ratio characteristics/weight is extremely advantageous since they remain lighter than the materials usually used in the past. However, they are also extremely expensive and moderately understood compared to the scientific knowledge that exists for crystalline materials. Numerical simulation tool has therefore become an integral part of the improvement of shaping processes, which requires the development of mechanical models. Until now, given stamping strategies using a single punch/matrix pair, the loads were assumed to be monotonous and therefore the associated behavioural laws were hyperelastic or viscoelastic. However, given that industrial demand is constantly growing and the complexity of the geometries which is also increasing, we propose, through the work presented here, innovative and original approaches such as incremental forming and the management of boundary conditions. These new approaches induce cyclic loading variations in shear or bending and hyperelastic models are therefore no longer enough reliable to properly model stamping processes. As the study of hysteresis behaviour is new for composite materials, the work presented then focuses on dry reinforcements. Thus, an experimental approach was carried out to determine the reaction of the fabric once it was subjected to cyclic loading. Then, dissipative hysteretic models were established for integration into finite element calculation software. Finally, numerical simulations with experimental comparisons are proposed, initially basic to validate the model and then more complex to show the interest of such models and strategies
APA, Harvard, Vancouver, ISO, and other styles
49

Nguyen, Huy Cuong. "Modélisation électrothermique de système électrique électronique automobile et pilotage de mosfet intelligents pour protéger les faisceaux, éviter les courts circuits aggravés et diminuer la masse de câblage." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14776/document.

Full text
Abstract:
Sur les différents calculateurs du véhicule, de plus en plus d'organes sont commandés par un interrupteur en silicium (circuit MOSFET) au lieu d'un relais. En plus de la fonction de commutation de puissance, le MOSFET peut comprendre un dispositif de mesure du courant afin de contrôler le pilotage de l'organe et/ou assurer une fonction de diagnostic. On appelle ce type de composant un commutateur intelligent de puissance ou Smart Switch. Il est aussi prévu dans le Smart Switch un dispositif de coupure du courant, en cas d'échauffement interne dû à une surintensité électrique. Avec les dernières avancées technologiques, ces composants peuvent aussi intégrer de la logique de pilotage et une interface de liaison numérique avec un microprocesseur. Cette dernière caractéristique motive lesujet de l'étude afin de définir des lois de protection améliorées contre les échauffements dus à une surintensité électrique.En effet, d’un point de vue de la protection électrique, le MOSFET a été conçu pour obtenir les mêmes caractéristiques qu’un fusible, avec la possibilité supplémentaire d’être réenclenché comme un disjoncteur. Le but est d’étudier les lois de pilotage qui pourraient permettre de mieux suivre les limites thermiques d’un conducteur électrique, en particulier dans les faibles surintensités, de façon à pouvoir diminuer le diamètre (donc le coût) des fils tout en assurant une meilleure protection face aux courts circuits impédants (courts-circuits sur une résistance un peu inférieure à la résistance nominale ducircuit, dans un rapport entre 1 et 3 par exemple)
On various vehicles Electronic Control Unit (ECU), more and more members are controlled bya MOSFET circuits instead of a relay. In addition to the power switching function, the MOSFET maymeasure the current to the steering control of the body and / or to ensure that a diagnostic function. Wecall this type of component a smart power switch or Smart Switch. It is also provided in the SmartSwitch device power failure, if the internal heating caused by electrical current. With the latesttechnology, these components can also integrate control logic and an interface for connection to adigital microprocessor. This last characteristic motivates the subject of study in order to defineimproved protection laws against overheating caused by an electrical current.Indeed, from the point of view of electrical protection, the MOSFET has been designed toachieve the same characteristics as a fuse, with the additional possibility to be reset as a circuit breaker.The aim is to study the control laws that could lead to better monitor the thermal limits of an electricalconductor, especially in low current, so as to reduce the diameter (hence the cost) of son while ensuringbetter protection against short-circuit-impedance (short circuit resistance of a little less than thenominal resistance of the circuit, in a ratio between 1 and 3 for example)
APA, Harvard, Vancouver, ISO, and other styles
50

Chiao, Chien-Ying, and 喬建穎. "Random Vibration for Dynamical Systems with Fractional Derivatives." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/12505701870396658422.

Full text
Abstract:
碩士
國立臺灣科技大學
營建工程系
102
This study presents an equivalent linear system approach for analying SDOF systems with fractional differential damping under nonstationary random excitations. The definition of the Riemann-Liouville fractional differential is adopted and the Newmark method is used as a tool for numerical analyses. The nonstationary excitations consider a Gaussian white noise process modulated by deterministic envelop functions. To approximate the displacement and velocity statistics, this paper uses deterministic steady-state responses for obtaining best equivalent stiffness and equivalent damping by which the original fractional differential system can then be replaced. In this framework,the traditional analytical methods such as the Liapunov Direct Method and the direct analytical method can then be directly executed. The study uses different values of damping ratio, fractional differential order and coefficient of strength to observe response differences between the approximated solutions and the Monte Carlo solutions. The results show that a reasonable precision level can be reached when the fractional coefficient is small.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography