Academic literature on the topic 'Fractional mean value theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractional mean value theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fractional mean value theorem"

1

GUO, PENG, CHANGPIN LI, and GUANRONG CHEN. "ON THE FRACTIONAL MEAN-VALUE THEOREM." International Journal of Bifurcation and Chaos 22, no. 05 (2012): 1250104. http://dx.doi.org/10.1142/s0218127412501040.

Full text
Abstract:
In this paper, we derive a fractional mean-value theorem both in the sense of Riemann–Liouville and in the sense of Caputo. This new formulation is more general than the generalized Taylor's formula of Kolwankar and the fractional mean-value theorem in the sense of Riemann–Liouville developed by Trujillo.
APA, Harvard, Vancouver, ISO, and other styles
2

Zine, Houssine, El Mehdi Lotfi, Delfim F. M. Torres, and Noura Yousfi. "Taylor’s Formula for Generalized Weighted Fractional Derivatives with Nonsingular Kernels." Axioms 11, no. 5 (2022): 231. http://dx.doi.org/10.3390/axioms11050231.

Full text
Abstract:
We prove a new Taylor’s theorem for generalized weighted fractional calculus with nonsingular kernels. The proof is based on the establishment of new relations for nth-weighted generalized fractional integrals and derivatives. As an application, new mean value theorems for generalized weighted fractional operators are obtained. Direct corollaries allow one to obtain the recent Taylor’s and mean value theorems for Caputo–Fabrizio, Atangana–Baleanu–Caputo (ABC) and weighted ABC derivatives.
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Jinfa. "On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem." Journal of Mathematical Study 52, no. 1 (2019): 38–52. http://dx.doi.org/10.4208/jms.v52n1.19.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chii-Huei, Yu. "Study on Some Properties of Fractional Analytic Function." International Journal of Mechanical and Industrial Technology 10, no. 1 (2022): 31–35. https://doi.org/10.5281/zenodo.7016567.

Full text
Abstract:
<strong>Abstract:</strong> In this paper, based on Jumarie&rsquo;s modified Riemann-Liouville (R-L) fractional derivative, we study some properties of fractional analytic function, such as fractional Taylor&rsquo;s theorem, first fractional derivative test, and second fractional derivative test. The major methods used in this paper are fractional Rolle&rsquo;s theorem, fractional mean value theorem, product rule for fractional derivatives, and a new multiplication of fractional analytic functions. In fact, these new results are generalizations of those results in ordinary calculus. <strong>Key
APA, Harvard, Vancouver, ISO, and other styles
5

San, Mufit, and Seyma Ramazan. "A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity." Electronic Research Archive 32, no. 5 (2024): 3092–112. http://dx.doi.org/10.3934/era.2024141.

Full text
Abstract:
&lt;abstract&gt;&lt;p&gt;In this paper, we study an initial value problem with a weakly singular nonlinear fractional differential equation of higher order. First, we establish the existence of global solutions to the problem within the appropriate function space. We then introduce a generalized Riemann-Liouville mean value theorem. Using this theorem, we prove the Nagumo-type uniqueness theorem for the stated problem. Moreover, we give two examples to illustrate the applicability of the existence and uniqueness theorems.&lt;/p&gt;&lt;/abstract&gt;
APA, Harvard, Vancouver, ISO, and other styles
6

Gholizadeh Zivlaei, Leila, and Angelo B. Mingarelli. "On the Basic Theory of Some Generalized and Fractional Derivatives." Fractal and Fractional 6, no. 11 (2022): 672. http://dx.doi.org/10.3390/fractalfract6110672.

Full text
Abstract:
We continue the development of the basic theory of generalized derivatives as introduced and give some of their applications. In particular, we formulate necessary conditions for extrema, Rolle’s theorem, the mean value theorem, the fundamental theorem of calculus, integration by parts, along with an existence and uniqueness theorem for a generalized Riccati equation, each of which provides simple proofs of the corresponding version for the so-called conformable fractional derivatives considered by many. Finally, we show that for each α&gt;1 there is a fractional derivative and a corresponding
APA, Harvard, Vancouver, ISO, and other styles
7

Ramzi, B. Albadarneh, M. Batiha Iqbal, Adwai Ahmad, Tahat Nedal, and Alomari A.K. "Numerical approach of riemann-liouville fractional derivative operator." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 6 (2021): 5367–78. https://doi.org/10.11591/ijece.v11i6.pp5367-5378.

Full text
Abstract:
This article introduces some new straightforward and yet powerful formulas in the form of series solutions together with their residual errors for approximating the Riemann-Liouville fractional derivative operator. These formulas are derived by utilizing some of forthright computations, and by utilizing the so-called weighted mean value theorem (WMVT). Undoubtedly, such formulas will be extremely useful in establishing new approaches for several solutions of both linear and nonlinear fractionalorder differential equations. This assertion is confirmed by addressing several linear and nonlinear
APA, Harvard, Vancouver, ISO, and other styles
8

Hadhoud, Adel R., Faisal E. Abd Alaal, Ayman A. Abdelaziz, and Taha Radwan. "Numerical treatment of the generalized time-fractional Huxley-Burgers’ equation and its stability examination." Demonstratio Mathematica 54, no. 1 (2021): 436–51. http://dx.doi.org/10.1515/dema-2021-0040.

Full text
Abstract:
Abstract In this paper, we show how to approximate the solution to the generalized time-fractional Huxley-Burgers’ equation by a numerical method based on the cubic B-spline collocation method and the mean value theorem for integrals. We use the mean value theorem for integrals to replace the time-fractional derivative with a suitable approximation. The approximate solution is constructed by the cubic B-spline. The stability of the proposed method is discussed by applying the von Neumann technique. The proposed method is shown to be conditionally stable. Several numerical examples are introduc
APA, Harvard, Vancouver, ISO, and other styles
9

Hasanah, Dahliatul. "On continuity properties of the improved conformable fractional derivatives." Jurnal Fourier 11, no. 2 (2022): 88–96. http://dx.doi.org/10.14421/fourier.2022.112.88-96.

Full text
Abstract:
The conformable fractional derivative has been introduced to extend the familiar limit definition of the classical derivative. Despite having many advantages compared to other fractional derivatives such as satisfying nice properties as classical derivative and easy to solve numerically, it also has disadvantages as it gives large error compared to Riemann-Liouville and Caputo fractional derivatives. Modified types of conformable derivatives have been proposed to overcome the shortcoming. The improved conformal fractional derivatives are declared to be better approximations of Riemann-Liouvill
APA, Harvard, Vancouver, ISO, and other styles
10

Nwaeze, Eze R. "A Mean Value Theorem for the Conformable Fractional Calculus on Arbitrary Time Scales." Progress in Fractional Differentiation and Applications 2, no. 4 (2016): 287–91. http://dx.doi.org/10.18576/pfda/020406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fractional mean value theorem"

1

Meoli, Alessandra. "On fractional probabilistic mean value theorems, fractional counting processes and related results." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2621.

Full text
Abstract:
2015 - 2016<br>The thesis collects the outcomes of the author’s research carried out in the research group Probability Theory and Mathematical Statistics at the Department of Mathematics, University of Salerno, during the doctoral programme “Mathematics, Physics and Applications”. The results are at the interface between Fractional Calculus and Probability Theory. While research in probability and applied fields is now well established and enthusiastically supported, the subject of fractional calculus, i.e. the study of an extension of derivatives and integrals to any arbitrary real or complex
APA, Harvard, Vancouver, ISO, and other styles
2

Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.

Full text
Abstract:
Les travaux de cette thèse portent sur l’estimation et la commande décentralisée des systèmes de grande dimension. L’objectif est de développer des capteurs logiciels pouvant produire une estimation fiable des variables nécessaires pour la stabilisation des systèmes non linéaires interconnectés. Une décomposition d’un tel système de grande dimension en un ensemble de n sous-systèmes interconnectés est primordiale. Ensuite, en tenant compte de la nature du sous-système ainsi que les fonctions d’interconnexions, des lois de commande décentralisées basées observateurs ont été synthétisées. Chaque
APA, Harvard, Vancouver, ISO, and other styles
3

Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139.

Full text
Abstract:
Les travaux de cette thèse portent sur l’estimation et la commande décentralisée des systèmes de grande dimension. L’objectif est de développer des capteurs logiciels pouvant produire une estimation fiable des variables nécessaires pour la stabilisation des systèmes non linéaires interconnectés. Une décomposition d’un tel système de grande dimension en un ensemble de n sous-systèmes interconnectés est primordiale. Ensuite, en tenant compte de la nature du sous-système ainsi que les fonctions d’interconnexions, des lois de commande décentralisées basées observateurs ont été synthétisées. Chaque
APA, Harvard, Vancouver, ISO, and other styles
4

Hassan, Lama. "Observation et commande des systèmes non linéaires à retard." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00934943.

Full text
Abstract:
L'objectif de cette thèse est de développer des méthodes de synthèses d'observateurs et des contrôleurs basés sur un observateur pour les systèmes à retard. Différentes classes de systèmes ont été traitées avec différents types de retard. Trois méthodes ont été développées. La première méthode traite des systèmes non linéaires avec des non-linéarités lipschitziennes et consiste à transformer le système d'origine à un système LPV grâce à une reformulation de la propriété classique de Lipschitz. Cette technique est formulée pour les cas continu et discret, respectivement. Nous avons démontré, à
APA, Harvard, Vancouver, ISO, and other styles
5

Hassan, Lama. "Observation et commande des systèmes non-linéaires à retard." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0141.

Full text
Abstract:
L'objectif de cette thèse est de développer des méthodes de synthèses d'observateurs et des contrôleurs basés sur un observateur pour les systèmes à retard. Différentes classes de systèmes ont été traitées avec différents types de retard. Trois méthodes ont été développées. La première méthode traite des systèmes non linéaires avec des non-linéarités lipschitziennes et consiste à transformer le système d'origine à un système LPV grâce à une reformulation de la propriété classique de Lipschitz. Cette technique est formulée pour les cas continu et discret, respectivement. Nous avons démontré, à
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Yu-Siang, and 林郁翔. "Discrete Mean Value Theorem." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60305687811322887486.

Full text
Abstract:
碩士<br>國立中興大學<br>應用數學系所<br>102<br>In this thesis, we derive the mean value theorems for the super-harmonic, sub-harmonic and harmonic solutions on square domains. Moreover, we consider the mesh functions on the mesh squares and establish the discrete mean value theorem by using the Green’s identities on rectangles in R2. From the discrete mean value theorem, we obtain that the value of a discrete harmonic function at a mesh point (x0, y0) is the average of any discrete square which has center at this mesh point (x0, y0) . For further research, it is interesting to extend the result here to n
APA, Harvard, Vancouver, ISO, and other styles
7

Hwang, Gwo-Jwu, and 黃國祖. "Mean value Theorem for one-sided differentiable function." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46244603358603144552.

Full text
Abstract:
碩士<br>國立臺北大學<br>統計學系<br>94<br>In the study of the behavior of probability density function of continuous random variable, if the functions are differentiable or piecewise differentiable, usually, one can apply the method of calculus to determine the monotonically, concavity, points of inflection and asymptotes of these functions to attain some properties of the probability distributions. Most of the tools in calculus are consequences of the Mean Value Theorem for Derivatives. It is a theorem about functions continuous in bounded closed intervals and differentiable in the interior of the interv
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Yuan-Feng, and 許原豐. "An analysis of optical flow algorithms for motion estimation by mean-value theorem." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/94324912031756206063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romero, Christopher 1978. "They Must Be Mediocre: Representations, Cognitive Complexity, and Problem Solving in Secondary Calculus Textbooks." Thesis, 2012. http://hdl.handle.net/1969.1/148224.

Full text
Abstract:
A small group of profit seeking publishers dominates the American textbook market and guides the learning of the majority of our nation’s calculus students. The College Board’s AP Calculus curriculum is a de facto national standard for this gateway course that is critically important to 21st century STEM careers. A multi-representational understanding of calculus is a central pillar of the AP curriculum. This dissertation asks whether this multi-representational vision is manifest in popular calculus textbooks. This dissertation began with a survey of all AP Calculus AB Examination free respo
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fractional mean value theorem"

1

Silva, Sidney. A ousadia do π ser racional. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-280-3.

Full text
Abstract:
Pi (π) is used to represent the most known mathematical constant. By definition, π is the ratio of the circumference of a circle to its diameter. In other words, π is equal to the circumference divided by the diameter (π = c / d). Conversely, the circumference is equal to π times the diameter (c = π . d). No matter how big or small a circle is, pi will always be the same number. The first calculation of π was made by Archimedes of Syracuse (287-212 BC) who approached the area of a circle using the Pythagorean Theorem to find the areas of two regular polygons: the polygon inscribed within the c
APA, Harvard, Vancouver, ISO, and other styles
2

Schumer, Peter D. Fractions. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/9780198916567.001.0001.

Full text
Abstract:
Abstract This work details a great deal of the history and manifest forms of fractions within mathematics. Rational numbers are fractions having either a terminating or repeating decimal expansion. Determining their decimal expansions, as well as the period length of repeating decimals, is completely worked out. Modern base 10 decimal expansions are compared with ancient Babylonian base 60 sexagesimal expansions. This leads to the study of infinite sums, especially to geometric series and the notions of convergence and divergence. The Fibonacci numbers are studied along with the series for 1/8
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fractional mean value theorem"

1

Ben-Israel, Adi, and Robert Gilbert. "Mean value theorem." In Computer-Supported Calculus. Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6146-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0077-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4419-8532-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mercer, Peter R. "The Mean Value Theorem." In More Calculus of a Single Variable. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smoryński, Craig. "The Mean Value Theorem." In MVT: A Most Valuable Theorem. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52956-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Obata, Nobuaki. "The Levy Laplacian and mean value theorem." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hui-Ru, Chen, and Shang Chan-Juan. "Generalizations of the Second Mean Value Theorem for Integrals." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Di Crescenzo, Antonio, Barbara Martinucci, and Julio Mulero. "Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions." In Computer Aided Systems Theory – EUROCAST 2017. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74727-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Indlekofer, Karl-Heinz, and Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kosheleva, Olga, and Karen Villaverde. "Uncertainty-Related Example Explaining Why Calculus Is Useful: Example of the Mean Value Theorem." In How Interval and Fuzzy Techniques Can Improve Teaching. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55993-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fractional mean value theorem"

1

Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem." In 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Yanwen, Chang Gao, and Wensheng Yu. "Formal Proof of the Mean Value Theorem Based on Coq." In 2023 China Automation Congress (CAC). IEEE, 2023. http://dx.doi.org/10.1109/cac59555.2023.10451477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qingling, and Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pei, Hongmei, Xuanhai Li, and Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral." In International Conference on Education, Management, Computer and Society. Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Messaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm." In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, C., Q. Lv, and J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields." In 80th EAGE Conference and Exhibition 2018. EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Donghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ichalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin, and Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation." In 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ou, Yangjing, Chenghua Wang, and Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fractional mean value theorem"

1

Smith, Donald L., Denise Neudecker, and Roberto Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2018. http://dx.doi.org/10.61092/iaea.yxma-3y50.

Full text
Abstract:
In two previous investigations that are documented in this IAEA report series, we examined the effects of non-Gaussian, non-symmetric probability density functions (PDFs) on the outcomes of data evaluations. Most of this earlier work involved considering just two independent input data values and their respective uncertainties. They were used to generate one evaluated data point. The input data are referred to, respectively, as the mean value and standard deviation pair (y0,s0) for a prior PDF p0(y) and a second mean value and standard deviation pair (ye,se) for a likelihood PDF pe(y). Concept
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Donald L., Denise Neudecker, and Roberto Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2020. http://dx.doi.org/10.61092/iaea.nqsh-f02d.

Full text
Abstract:
In two previous investigations that are documented in this IAEA report series, we examined the effects of non-Gaussian, non-symmetric probability density functions (PDFs) on the outcomes of data evaluations. Most of this earlier work involved considering just two independent input data values and their respective uncertainties. They were used to generate one evaluated data point. The input data are referred to, respectively, as the mean value and standard deviation pair (y0,s0) for a prior PDF p0(y) and a second mean value and standard deviation pair (ye,se) for a likelihood PDF pe(y). Concept
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, D. L., D. Neudecker, and R. Capote Noy. Investigation of the Effects of Probability Density Function Kurtosis on Evaluated Data Results. IAEA Nuclear Data Section, 2020. http://dx.doi.org/10.61092/iaea.3ar5-xmp8.

Full text
Abstract:
In two previous investigations that are documented in this IAEA report series, we examined the effects of non-Gaussian, non-symmetric probability density functions (PDFs) on the outcomes of data evaluations. Most of this earlier work involved considering just two independent input data values and their respective uncertainties. They were used to generate one evaluated data point. The input data are referred to, respectively, as the mean value and standard deviation pair (y0,s0) for a prior PDF p0(y) and a second mean value and standard deviation pair (ye,se) for a likelihood PDF pe(y). Concept
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!