Academic literature on the topic 'Fractography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractography"
Quinn, George D. "A History of the Fractography of Brittle Materials." Key Engineering Materials 409 (March 2009): 1–16. http://dx.doi.org/10.4028/www.scientific.net/kem.409.1.
Full textBettge, D., and L. Schmies. "The WG Fractography Online Database – stage of development and planning." Practical Metallography 60, no. 9 (August 21, 2023): 569–79. http://dx.doi.org/10.1515/pm-2023-0048.
Full textMaros, Maria Berkes, Nikoletta Kaulics Helmeczi, and Ján Dusza. "Qualitative and Quantitative Fractographic Analysis of Dynamically Impacted Si3N4 Ceramics." Materials Science Forum 589 (June 2008): 73–78. http://dx.doi.org/10.4028/www.scientific.net/msf.589.73.
Full textFENG, JUNJUN, ENYUAN WANG, QISONG HUANG, HOUCHENG DING, and YANKUN MA. "STUDY ON COAL FRACTOGRAPHY UNDER DYNAMIC IMPACT LOADING BASED ON MULTIFRACTAL METHOD." Fractals 28, no. 01 (January 30, 2020): 2050006. http://dx.doi.org/10.1142/s0218348x20500061.
Full textMoleko, Teboho C., Maina Maringa, and Willie B. Du Preez. "Fractography and Microstructural Analysis of As-Built and Stress Relieved DMLS Ti6Al4V (ELI) Plates Subjected to High Velocity Impact." Advances in Materials Science and Engineering 2022 (August 19, 2022): 1–14. http://dx.doi.org/10.1155/2022/9008244.
Full textOudbashi, Omid, and Russell Wanhill. "Long-Term Embrittlement of Ancient Copper and Silver Alloys." Heritage 4, no. 3 (September 10, 2021): 2287–319. http://dx.doi.org/10.3390/heritage4030130.
Full textLauschmann, Hynek, Ondřej Ráček, Michal Tůma, and Ivan Nedbal. "TEXTURAL FRACTOGRAPHY." Image Analysis & Stereology 21, no. 4 (May 3, 2011): 49. http://dx.doi.org/10.5566/ias.v21.ps49-s59.
Full textTanaka, Sumio, Yukio Hirose, and Keisuke Tanaka. "X-ray Fractographic Study on Alumina and Zirconia Ceramics." Advances in X-ray Analysis 34 (1990): 719–27. http://dx.doi.org/10.1154/s0376030800015032.
Full textGhiban, Brandusa, Florentina Catalina Varlan, Marius Niculescu, and Dan Voinescu. "Fractographic Evaluation of the Metallic Materials for Medical Applications." Key Engineering Materials 745 (July 2017): 62–74. http://dx.doi.org/10.4028/www.scientific.net/kem.745.62.
Full textBarbosa Marques, Luís Felipe, Jonas Frank Reis, Ana Beatriz Ramos Moreira Abrahão, Luis Rogério D. Oliveira Hein, Edson Cocchieri Botelho, and Michelle L. Costa. "Interfacial, mechanical, and thermal behavior of PEI/glass fiber welded joints influenced by hygrothermal conditioning." Journal of Composite Materials 56, no. 2 (November 10, 2021): 239–49. http://dx.doi.org/10.1177/00219983211055826.
Full textDissertations / Theses on the topic "Fractography"
Banerji, Kingshuk. "Quantitative analysis of fracture surfaces using computer aided fractography." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/15381.
Full textFeinberg-Ringel, Karen Stacey. "Quantitative fractographic analysis of Al[subscript]2O[subscript]3/Al-25%Li metal martrix composite." Thesis, Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/19987.
Full textDrury, William James. "Development of quantitative fractography and its application to the study of fracture processes of materials." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/20054.
Full textDunn, Leigh. "Investigating accidents involving aircraft manufactured from polymer composite materials." Thesis, Cranfield University, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8448.
Full textTrexler, Matthew David. "The Relationship of Microstructure to Fracture and Corrosion Behavior of a Directionally Solidified Superalloy." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14617.
Full textDeshpande, Nishkamraj U. "Characterization of fracture path and its relationship with microstructure and fracture toughness of aluminum alloy 7050." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/20210.
Full textHarris, Jonathan James. "Metal-glass interpenetrating-phase composites." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366294.
Full textBoscato, Noeli. "Caracterização ceramica e avaliação fractografica da interface adesiva com resina, apos diferentes tratamentos de superficie." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288390.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-04T13:44:44Z (GMT). No. of bitstreams: 1 Boscato_Noeli_D.pdf: 1647960 bytes, checksum: 3d012e02dce78a5277da1ede4cc574e4 (MD5) Previous issue date: 2005
Resumo: Este estudo avaliou o efeito do tratamento de superfície na resistência adesiva à tração (s) entre resina e as cerâmicas IPS Empress®(E1) e VITAVM7®(V7) e o modo de falha nessa interface adesiva. A metodologia proposta teve por finalidade testar a hipótese de que a s entre resina e cerâmica é controlada pelo tratamento de superfície das cerâmicas. Foram confeccionados 10 blocos de uma cerâmica a base de leucita, (E1) e de uma cerâmica feldspática com duas fases vítreas (V7), que foram polidos até a granulação de 1 µm. Os blocos de cada cerâmica foram divididos aleatoriamente em dois grupos e tiveram suas superfícies tratadas como segue (n=5): Grupos E1HF e V7HF: aplicação de ácido hidrofluorídrico a 9,5% (HF - Ultradent) aplicado por 60 s; Grupos E1CS e V7CS: jateamento com partículas de alumina modificadas por sílica (CS ¿ Cojet System, 3M-Espe), aplicado por 15 s. As superfícies cerâmicas tratadas foram lavadas, secadas e o silano foi aplicado deixando-o evaporar. Aplicaram-se duas camadas finas de adesivo (Single Bond, 3M), seguido da aplicação de camadas de 2 mm de resina composta (Z250, 3M), que foram fotopolimerizadas durante 40 s cada uma. Os blocos cerâmica-adesivo-resina composta foram seccionados em dois eixos, x e y, obtendo-se corpos-de-prova em forma de barras (n=30), com área adesiva média de 1,04 mm2. Os corpos-de-prova foram armazenados em água destilada a 37°C por uma semana antes do teste de tração em uma máquina de ensaios universal com velocidade de carga de 1.0 mm.min-1, seguido da análise microscópica da superfície fraturada. A análise estatística foi realizada pela análise de variância, teste de Tukey (a=.01) e análise de Weibull. As médias e desvio padrão da s (MPa) foram: E1HF: 29,8±4,5(a); E1CS: 24,6±5,6(b); V7HF: 22,3±4,0(b); V7CS: 15,7±6,9(c). Os valores médios de s do Grupo E1HF foram significativamente maiores que os valores médios dos demais grupos (p=0,0001). As duas cerâmicas apresentaram valores médios de s significativamente maiores quando tratadas com HF do que com CS (p=0,0001). Todas as fraturas ocorreram dentro da zona adesiva. O módulo de Weibull (m) foi mais alto para o Grupo E1HF (7,66), e o Grupo V7CS mostrou o valor mais baixo de m (2,54). Os resultados confirmam a hipótese inicial de que a s da resina à cerâmica é controlada, primariamente, pelo tratamento de superfície do material cerâmico
Abstract: This study evaluated the effect of ceramic surface treatments on tensile bond strength (s) and the mode of failure of a resin bonded to two types of ceramics, testing the hypothesis that s of ceramics to resin is controlled by the ceramic surface treatment. Methods: Ten blocks of each the hot-pressed leucite-based ceramic (E1- IPS Empress) and the two-phase glassy feldspathic ceramic (V7-VITAVM7) were fabricated, polished through 1 µm alumina abrasive, and divided into two groups per ceramic (n=5): Groups E1HF and V7HF, 9.5% hydrofluoric acid (HF) was applied for 60 s; Groups E1CS e V7CS, silica coating (CS) using Cojet System (3M-Espe) for 15 s. The treated ceramic surfaces were washed and dried. Silane was applied and let to evaporate. An adhesive resin (Single Bond, 3M) followed by a resin composite (Z250, 3M) were applied on the ceramic treated surfaces and light cured. The composite-ceramic blocks were cut to produce bar-shaped specimens with a mean bonding area of 1.04 mm2 (n=30). Specimens were stored in 37°C distilled water for 1 week before tensile loading to failure in a universal testing machine with cross-head speed of 1.0 mm.min-1. Fracture surfaces were examined under scanning electron microscope (SEM). Results were statistically analyzed using one way ANOVA, Tukey¿s test and Weibull analyses. Results: Mean s and standard deviation (MPa) values were as follows: E1HF: 29.8±4.5(a); E1CS: 24.6±5.6(b); V7HF: 22.3±4.0(b); V7CS: 15.7±6.9(c). Mean s value of Group E1HF was statistically higher than the other Groups mean values (p=0.0001). HF treatment produced significantly higher mean s value than CS treatment, independent of the ceramic material (p=0.0001). All fractures occurred within the adhesion zone. E1HF showed the highest Weibull modulus (m) value (7.66) and V7CS exhibited the lowest m value (2.54). Conclusion: Results confirmed the testing hypothesis that s of ceramics to resin is controlled primarily by the ceramic surface treatment
Doutorado
Protese Dental
Doutor em Clínica Odontológica
Caltabiano, Pietro Carelli Reis de Oliveira [UNESP]. "Fractografia quantitativa: relações entre tenacidade e o comportamento fractal em ligas metálicas." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94460.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Fracture surface express the sequence of energy release events during crack propagation and, in the case of metallic alloys, the topographic evolution can descrbr the action of load lines, failures due to using processing, and others. In the cases, the quantitative fractography can help the investigation of failures in structures and manufacturing processes. In this work, two correlation analyses were carried out: the first between the stretch zone width (SZW) and fracture toughness (Kc) and the second between Kc and the fractality of the fractured surface topography, both analyzed by digital image processing. The 15-5PH stee and AA7475 aluminium alloy fracture surfaces for analysis were obtained by toughness testing. Each seurface was mapped by extend depth of field technique, and the following fractal dimension values were calculated for each mapped position: monofractal dimension (Df), structural dimension (Ds) and textural dimension (DT). The results for analysis between LZE and Kc data showed a high correlation for 15-5PH steel, also checking the validity of the delimitation method of SZW and the image reconstruction process. The fractal analysis showed that as higher the ductility of the material, as lower will be the level of linear correlation obtained between toughness and the fractal values. However, for 15-5PH steel, with behavior ranging between the linear-elastic and elastic-plastic, the level of linear correlation between Kc and the fractal values tend to be significant, especially for established correlations involving the textural dimension (Dt). However, for AA 7475 aluminium alloy no significant correlation could be established due to predominance of shallow dimples
Mummery, Paul Malcolm. "The micromechanisms of fracture in metal matrix composites." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:b725a8ad-25da-4d3a-b84d-c3a8f493dd06.
Full textBooks on the topic "Fractography"
R, Koterazawa, Ebara R, and Nishida S, eds. Fractography. London: Elsevier Applied Science, 1990.
Find full textBradt, Richard C., and Richard E. Tressler, eds. Fractography of Glass. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8.
Full textAmerican Society for Metals. ASM handbook: Fractography. Metals Park, Ohio: American Society for Metals, 1987.
Find full text1938-, Bradt R. C., and Tressler Richard E, eds. Fractography of glass. New York: Plenum Press, 1994.
Find full textStrauss, BM, and SK Putatunda, eds. Quantitative Methods in Fractography. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1990. http://dx.doi.org/10.1520/stp1085-eb.
Full textGonzález-Velázquez, Jorge Luis. Fractography and Failure Analysis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76651-5.
Full textBhowmick, Anil K., and S. K. De, eds. Fractography of Rubbery Materials. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3850-5.
Full text1946-, Strauss Bernard M., Putatunda Susil K. 1948-, ASTM Committee E-9 on Fatigue., ASTM Committee E-24 on Fracture Testing., and Symposium on Evaluation and Techniques in Fractography (1988 : Atalnta, Ga.), eds. Quantitative methods in fractography. Philadelphia, PA: ASTM, 1990.
Find full textCenter, Langley Research, ed. Fractography of composite delamination. Salt Lake City, Utah: University of Utah, 1990.
Find full textBook chapters on the topic "Fractography"
Bahat, Dov. "Rock Fractography." In Tectonofractography, 139–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76162-1_3.
Full textUnderwood, Ervin E. "Quantitative Fractography." In Applied Metallography, 101–22. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-9084-8_8.
Full textLawn, Brian R., and David B. Marshall. "Indentation Fractography." In Fractography of Glass, 1–35. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_1.
Full textGonzález-Velázquez, Jorge Luis. "Elements of Fractography." In Structural Integrity, 21–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76651-5_2.
Full textDanzer, Robert, Alexander Platzer, Peter Supancic, and Zhonghua Wang. "Fractography of Thermistors." In Ceramic Transactions Series, 231–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144152.ch18.
Full textRichter, H. G., and F. Kerkhof. "Stress Wave Fractography." In Fractography of Glass, 75–109. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_3.
Full textGupta, Prabhat K. "Fractography of Fiberglass." In Fractography of Glass, 185–206. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_6.
Full textChandan, Harish C., Ronald D. Parker, and David Kalish. "Fractography of Optical Fibers." In Fractography of Glass, 143–84. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_5.
Full textMecholsky, J. J. "Quantitative Fractographic Analysis of Fracture Origins in Glass." In Fractography of Glass, 37–73. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_2.
Full textMichalske, Terry A. "Fractography of Stress Corrosion Cracking in Glass." In Fractography of Glass, 111–42. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1325-8_4.
Full textConference papers on the topic "Fractography"
Makarenko, Konstantin, Alexander Nikitin, and Andrey Parenko. "Fractographic analysis of fractures of graphitized cast iron using optical microscopy." In International Conference "Computing for Physics and Technology - CPT2020". Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fce27703aebb2.03360772.
Full textOuahabi, Abdeldjalil, Stephane Jaffard, and Djedjiga Ait Aouit. "Wavelet based Multifractal Analysis in Fractography." In 2008 First Workshops on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2008. http://dx.doi.org/10.1109/ipta.2008.4743742.
Full textLeung, Chuk-ling. "Fractography of Adhesively Bonded SMC-Metal Joints." In 1988 Conference and Exposition on Future Transportation Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/881186.
Full textTarasov, Sergei. "Minkowski functionals and fractography of aluminum alloys." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966517.
Full textSingh, J. P., R. A. Roberts, J. J. Vaitekunas, and W. A. Ellingson. "Failure Prediction of Hot-Pressed Si3N4 Ceramics by NDE." In ASME 1987 International Gas Turbine Conference and Exhibition. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/87-gt-7.
Full textNorico, Allan, and Rommel Estores. "A Novel Approach on Fractography Through Infrared Microscopy." In ISTFA 2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.istfa2019p0140.
Full textKhan, W. Q., Q. Wang, and X. Jin. "Study of Fractography and Overaging in Ly12 alloy." In 2015 International Conference on Structural, Mechanical and Material Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icsmme-15.2015.22.
Full textDjezzar, Sofiane, Vamegh Rasouli, Aldjia Boualam, and Minou Rabiei. "FRACTOGRAPHY ANALYSIS OF CAMBRO-ORDOVICIAN RESERVOIRS THROUGH SURFACE ANALOG. MOUYDIR BASIN, ALGERIA." In Joint 53rd Annual South-Central/53rd North-Central/71st Rocky Mtn GSA Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019sc-325903.
Full textSugahara, Tarcila, Danieli A. P. Reis, Carlos de Moura Neto, and Francisco Piorino Neto. "Study of the Fractography of Inconel 718 Superalloy After Creep Mechanical Test." In SAE Brasil 2011 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-36-0401.
Full textZhang, J. M. "Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography." In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2006. http://dx.doi.org/10.1063/1.2184662.
Full textReports on the topic "Fractography"
Quinn, George D. NIST Recommended Practice Guide Fractography of Ceramics and Glasses. National Institute of Standards and Technology, May 2016. http://dx.doi.org/10.6028/nist.sp.960-16e2.
Full textQuinn, George D. NIST Recommended Practice Guide: Fractography of Ceramics and Glasses. National Institute of Standards and Technology, September 2020. http://dx.doi.org/10.6028/nist.sp.960-16e3.
Full textCzajkowski, C. J. Fractography evaluation of impact and tensile specimens from the HFBR (High Flux Beam Reactor). Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5265693.
Full textSaleh, Tarik A., Stuart Andrew Maloy, Tobias J. Romero, David Sprouster, and Lynne Ecker. High Temperature Mechanical Properties, Fractography and Synchrotron Studies of ATF clad materials from the UCSB-NSUF Irradiations. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170626.
Full textLee, E. U., C. Lei, H. C. Sanders, and R. Taylor. Evolution of Fractograph During Fatigue and Stress Corrosion Cracking. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420467.
Full textShockey, Donald A., Takao Kobayashi, Naoki Saito, Jean-Marie Aubry, and Alberto Grunbaum. Fractographic Analysis of High-Cycle Fatigue in Aircraft Engines. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada386670.
Full textKapusta, A. A., and J. H. Underwood. A Fractographic Study of a Circa AD83 Roman Nail. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada392069.
Full textQuinn, George D., George D. Quinn, Lewis K. Ives, and Said Jahanmir. On the fractographic analysis of machining cracks in ground ceramics. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.sp.996.
Full textQuinn, George D., Jeffrey J. Swab, and Michael J. Slavin. A Proposed Standard Practice for Fractographic Analysis of Monolithic Advanced Ceramics. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada231989.
Full textArumugam, Udayansankar, Pablo Cazenave, and Ming Gao. PR-328-133702-R01 Study of the Mechanism for Cracking in Dents in a Crude Oil Pipeline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2019. http://dx.doi.org/10.55274/r0011556.
Full text