Journal articles on the topic 'Fractura interlaminar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fractura interlaminar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zenasni, R., A. S. Bachir, M. A. García, J. Riba, A. Argüelles, and J. Viña. "Influencia del envejecimiento higrotérmico en el comportamiento a fractura de compuestos de matriz termoplástica." Boletín de la Sociedad Española de Cerámica y Vidrio 43, no. 2 (April 30, 2004): 423–25. http://dx.doi.org/10.3989/cyv.2004.v43.i2.558.
Full textTareq, Md Sarower Hossain, Shaik Zainuddin, Mahesh V. Hosur, Bodiuzzaman Jony, Mohammad Al Ahsan, and Shaik Jeelani. "Flexural fatigue and fracture toughness behavior of nanoclay reinforced carbon fiber epoxy composites." Journal of Composite Materials 54, no. 29 (June 27, 2020): 4645–60. http://dx.doi.org/10.1177/0021998320935166.
Full textMartin, R. H. "Interlaminar Fracture Characterization." Key Engineering Materials 120-121 (May 1996): 329–46. http://dx.doi.org/10.4028/www.scientific.net/kem.120-121.329.
Full textCastellanos, AG, MS Islam, MAI Shuvo, Y. Lin, and P. Prabhakar. "Nanowire reinforcement of woven composites for enhancing interlaminar fracture toughness." Journal of Sandwich Structures & Materials 20, no. 1 (July 22, 2016): 70–85. http://dx.doi.org/10.1177/1099636216650989.
Full textKatogi, Hideaki, and Kenichi Takemura. "Effect of Carbon Milled Fiber Addition on Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics." Key Engineering Materials 577-578 (September 2013): 73–76. http://dx.doi.org/10.4028/www.scientific.net/kem.577-578.73.
Full textWu, Xiaochuan, Zhongde Shan, Feng Liu, and Yuan Wang. "Mechanical properties of 3D-woven composites with guide sleeves." Journal of Composite Materials 54, no. 12 (March 23, 2016): 1571–78. http://dx.doi.org/10.1177/0021998316636461.
Full textGhasemnejad, H., V. Thomas, and H. Hadavinia. "Mixed-Mode Delamination Failure of Z-Pinned Hybrid Laminated Composites." Key Engineering Materials 452-453 (November 2010): 453–56. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.453.
Full textSembokuya, Hideki, Masaki Hojo, and Kiyoshi Kemmochi. "Mode I Interlaminar Fracture Toughness of Organic Fiber Reinforced Plastics." Advanced Composites Letters 6, no. 3 (May 1997): 096369359700600. http://dx.doi.org/10.1177/096369359700600302.
Full textHaldar, Sandip, Claudio S. Lopes, and Carlos Gonzalez. "Interlaminar and Intralaminar Fracture Behavior of Carbon Fiber Reinforced Polymer Composites." Key Engineering Materials 713 (September 2016): 325–28. http://dx.doi.org/10.4028/www.scientific.net/kem.713.325.
Full textAliabadi, M. H. "Interlaminar fracture of composites." Engineering Analysis with Boundary Elements 9, no. 4 (January 1992): 368. http://dx.doi.org/10.1016/0955-7997(92)90034-5.
Full textLiu, Xin, Tao Sun, Zhanjun Wu, and Huiyong He. "Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites with synthetic boehmite nanosheets at room temperature and low temperature." Journal of Composite Materials 52, no. 7 (July 2, 2017): 945–52. http://dx.doi.org/10.1177/0021998317716529.
Full textShin, Yong-Chul, and Seung-Mo Kim. "Enhancement of the Interlaminar Fracture Toughness of a Carbon-Fiber-Reinforced Polymer Using Interleaved Carbon Nanotube Buckypaper." Applied Sciences 11, no. 15 (July 24, 2021): 6821. http://dx.doi.org/10.3390/app11156821.
Full textGillespie, J. W. "Damage Tolerance of Composite Structures: The Role of Interlaminar Fracture Mechanics." Journal of Offshore Mechanics and Arctic Engineering 113, no. 3 (August 1, 1991): 247–52. http://dx.doi.org/10.1115/1.2919927.
Full textDaricik, Fatih. "Mesh size sensitivity analysis for interlaminar fracture of the fiber-reinforced laminated composites." Journal of Engineered Fibers and Fabrics 14 (January 2019): 155892501988346. http://dx.doi.org/10.1177/1558925019883460.
Full textXie, Zong Hong, Xiang Li, Jian Zhao, Jie Hao, Yan Peng Sun, and Xiao Dong Sui. "Study on the Mode I Interlaminar Fracture Toughness of Multi-Directional Composite Laminates." Advanced Materials Research 718-720 (July 2013): 186–90. http://dx.doi.org/10.4028/www.scientific.net/amr.718-720.186.
Full textDeng, Shi Qiang, P. Rosso, Lin Ye, and Klaus Friedrich. "Interlaminar Fracture of CF/EP Composites Modified with Nano-Silica." Solid State Phenomena 121-123 (March 2007): 1403–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.1403.
Full textHein, Luis Rogerio de O., and Kamila A. de Campos. "Correlative Light-Electron Fractography of Interlaminar Fracture in a Carbon–Epoxy Composite." Microscopy and Microanalysis 21, no. 6 (October 30, 2015): 1475–81. http://dx.doi.org/10.1017/s143192761501538x.
Full textSembokuya, Hideki, Masaki Hojo, and Kiyoshi Kemmochi. "The Effect of Water Absorption on Mode I Intterlaminar Fracture Toughness of Aramid Fibre Reinforced Plastics." Advanced Composites Letters 8, no. 2 (March 1999): 096369359900800. http://dx.doi.org/10.1177/096369359900800201.
Full textShifa, Madni, Fawad Tariq, and Rasheed Ahmed Baloch. "Influence of Carbon Nanotubes on the Interlaminar Properties of Carbon Fiber Aluminum Metal Laminates." Key Engineering Materials 778 (September 2018): 100–110. http://dx.doi.org/10.4028/www.scientific.net/kem.778.100.
Full textLi, Rongzhi, Lin Ye, and Yiu-Wing Mai. "Interlaminar Fracture of Stitched GFRP Laminates." Advanced Composites Letters 5, no. 1 (January 1996): 096369359600500. http://dx.doi.org/10.1177/096369359600500101.
Full textLiu, Wei, Gui Qiong Jiao, Wei Xi Zhang, and Wei Min Zhang. "Interlaminar Shear Property of Z-Pins Reinforced Woven Ceramic Matrix Composites." Advanced Materials Research 197-198 (February 2011): 1608–12. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1608.
Full textHsieh, Tsung-Han, Wei-Jen Chen, Chin-Lung Chiang, and Ming-Yuan Shen. "Environmental aging effect on interlaminar properties of graphene nanoplatelets reinforced epoxy/carbon fiber composite laminates." Journal of Reinforced Plastics and Composites 37, no. 19 (March 8, 2016): 1177–90. http://dx.doi.org/10.1177/0731684416637219.
Full textBurlayenko, Vyacheslav, and Tomasz Sadowski. "FE modeling of delamination growth in interlaminar fracture specimens." Budownictwo i Architektura 2, no. 1 (June 11, 2008): 095–109. http://dx.doi.org/10.35784/bud-arch.2315.
Full textYoon, Sung Ho, Kwang Su Heo, Jin Oh Oh, Jong Cheol Jeong, Sang Jin Lee, Jung Seok Kim, and Seong Ho Han. "Damage Tolerance of Carbon Fabric/Epoxy Composite for Korean Tilting Train Carbody." Key Engineering Materials 334-335 (March 2007): 449–52. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.449.
Full textHou, Meng, Lin Ye, and Yiu-Wing Mai. "Effect of Moulding Temperature on Flexure, Impact Strength and Interlaminar Fracture Toughness of CF/PEI Composite." Journal of Reinforced Plastics and Composites 15, no. 11 (November 1996): 1117–30. http://dx.doi.org/10.1177/073168449601501104.
Full textKwak, Juho, Yu Seong Yun, and Oh Heon Kwon. "The Relation of the Interlaminar Fracture Toughness and the Acoustic Emission (Ae) under the Enf Test." Key Engineering Materials 353-358 (September 2007): 279–82. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.279.
Full textMay, Michael, Sebastian Kilchert, and Tobias Gerster. "A Modified Compact Tension Test for Characterization of the Intralaminar Fracture Toughness of Tri-Axial Braided Composites." Materials 14, no. 17 (August 27, 2021): 4890. http://dx.doi.org/10.3390/ma14174890.
Full textUchijo, Chika, Yuki Kuroda, Kiyoshi Kemmochi, and Li Min Bao. "Research on FRP Composite Structures with Self-Healing Function - Effect of Filler on FRP Interlaminar Fracture Toughness." Advanced Materials Research 332-334 (September 2011): 31–34. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.31.
Full textGuo, Miaocai, and Xiaosu Yi. "Effect of Paper or Silver Nanowires-Loaded Paper Interleaves on the Electrical Conductivity and Interlaminar Fracture Toughness of Composites." Aerospace 5, no. 3 (July 19, 2018): 77. http://dx.doi.org/10.3390/aerospace5030077.
Full textJi, Ai Hong, Min Lu, Meng Zha, Ben Zheng Dong, Li Hong Gao, and Zhen Dong Dai. "Model I Interlaminar Fracture Toughness of Carbon Fiber Reinforced Polymer Matrix Composites." Advanced Materials Research 887-888 (February 2014): 81–85. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.81.
Full textYang, Z., and C. T. Sun. "Interlaminar Fracture Toughness of a Graphite/Epoxy Multidirectional Composite1." Journal of Engineering Materials and Technology 122, no. 4 (April 14, 2000): 428–33. http://dx.doi.org/10.1115/1.1289027.
Full textSales, Rita de Cássia Mendonça, Silas Rodrigo Gusmão, Ricardo Francisco Gouvêa, Thomas Chu, José Maria Fernandez Marlet, Geraldo Maurício Cândido, and Maurício Vicente Donadon. "The temperature effects on the fracture toughness of carbon fiber/RTM-6 laminates processed by VARTM." Journal of Composite Materials 51, no. 12 (November 25, 2016): 1729–41. http://dx.doi.org/10.1177/0021998316679499.
Full textLan, Bangwei, Yi Liu, Song Mo, Minhui He, Lei Zhai, and Lin Fan. "Interlaminar Fracture Behavior of Carbon Fiber/Polyimide Composites Toughened by Interleaving Thermoplastic Polyimide Fiber Veils." Materials 14, no. 10 (May 20, 2021): 2695. http://dx.doi.org/10.3390/ma14102695.
Full textTanaka, Kazuto, Kosuke Ishida, Keisuke Takemoto, and Tsutao Katayama. "Effect of Resin Layer Thickness on Mode II Delamination Growth Property of CFRTP Laminates under Static Loadings." Key Engineering Materials 827 (December 2019): 446–51. http://dx.doi.org/10.4028/www.scientific.net/kem.827.446.
Full textArmanios, Erian A. "Interlaminar Fracture in Graphite/Epoxy Composites." Key Engineering Materials 37 (January 1991): 85–102. http://dx.doi.org/10.4028/www.scientific.net/kem.37.85.
Full textRikards, R. "Interlaminar fracture behaviour of laminated composites." Computers & Structures 76, no. 1-3 (June 2000): 11–18. http://dx.doi.org/10.1016/s0045-7949(99)00148-0.
Full textChai, Herzl. "Interlaminar shear fracture of laminated composites." International Journal of Fracture 43, no. 2 (May 1990): 117–31. http://dx.doi.org/10.1007/bf00036181.
Full textRussell, Alan J. "Micromechanisms of interlaminar fracture and fatigue." Polymer Composites 8, no. 5 (October 1987): 342–51. http://dx.doi.org/10.1002/pc.750080509.
Full textPapanicolaou, G. C., and D. Bakos. "Interlaminar fracture behaviour of sandwich structures." Composites Part A: Applied Science and Manufacturing 27, no. 3 (January 1996): 165–73. http://dx.doi.org/10.1016/1359-835x(95)00026-x.
Full textAllix, O., P. Ladevéze, and A. Corigliano. "Damage analysis of interlaminar fracture specimens." Composite Structures 31, no. 1 (January 1995): 61–74. http://dx.doi.org/10.1016/0263-8223(95)00002-x.
Full textKang Yong Lee and Soon Man Kwon. "Interlaminar fracture toughness for composite materials." Engineering Fracture Mechanics 45, no. 6 (August 1993): 881–87. http://dx.doi.org/10.1016/0013-7944(93)90073-2.
Full textMartin, R. H. "Incorporating interlaminar fracture mechanics into design." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 214, no. 2 (April 2000): 91–97. http://dx.doi.org/10.1177/146442070021400204.
Full textSedlacek, Frantisek, Tomas Kalina, and Karel Raz. "Determination of Mode II Interlaminar Fracture Toughness of CFRP Composites Using Numerical Simulations." Key Engineering Materials 801 (May 2019): 71–76. http://dx.doi.org/10.4028/www.scientific.net/kem.801.71.
Full textLiu, Yu, Cheng-Bing Qu, Qing-Ping Feng, Hong-Mei Xiao, and Shao-Yun Fu. "Enhancement in Mode II Interlaminar Fracture Toughness at Cryogenic Temperature of Glass Fiber/Epoxy Composites through Matrix Modification by Carbon Nanotubes and n-Butyl Glycidyl Ether." Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/812061.
Full textJeevan Kumar, N. "Dual cracks propagation behavior in hybrid skin–stiffener joint." International Journal of Computational Materials Science and Engineering 08, no. 03 (September 2019): 1950012. http://dx.doi.org/10.1142/s204768411950012x.
Full textShang, Xiaosen, Yunhong Ding, Lifeng Yang, Yonghui Wang, and Tao Wang. "Investigating the Effect of Interlayer Geo-stress Difference on Hydraulic Fracture Propagation: Physical Modeling and Numerical Simulations." Open Petroleum Engineering Journal 9, no. 1 (August 29, 2016): 195–206. http://dx.doi.org/10.2174/1874834101609160195.
Full textSHINDO, Ysuhide, Mayumi SUMIKAWA, Tomo TAKEDA, Satoru TAKANO, and Fumio NARITA. "Analysis of mode I Interlaminar Fracture and Damage Behavior of GFRP Woven Laminates at Cryogenic Temperatures." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 235–36. http://dx.doi.org/10.1299/jsmecmd.2004.17.235.
Full textUda, Nobuhide, Kousei Ono, and Tadashi Nagayasu. "OS14-2-4 Mode-I Interlaminar Fracture Behavior of Heat-Resistant Composite Materials at High Temperature." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _OS14–2–4——_OS14–2–4—. http://dx.doi.org/10.1299/jsmeatem.2007.6._os14-2-4-.
Full textKim, Jang Kyo, Naveed A. Siddiqui, Ricky S. C. Woo, Christopher K. Y. Leung, and Arshad Munir. "Carbon Fibre-Organoclay Hybrid Epoxy Composites: Fracture Behaviours and Mechanical Properties." Key Engineering Materials 312 (June 2006): 179–86. http://dx.doi.org/10.4028/www.scientific.net/kem.312.179.
Full textZhou, Jing, Yingguang Li, Nanya Li, and Xiaozhong Hao. "Enhanced interlaminar fracture toughness of carbon fiber/bismaleimide composites via microwave curing." Journal of Composite Materials 51, no. 18 (October 7, 2016): 2585–95. http://dx.doi.org/10.1177/0021998316673892.
Full text