Journal articles on the topic 'Fracture toughness master curve'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fracture toughness master curve.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lambrigger, M. "Master curve for brittle cleavage fracture toughness testing." Engineering Fracture Mechanics 55, no. 4 (November 1996): 677–78. http://dx.doi.org/10.1016/0013-7944(95)00259-6.
Full textYoon, K. K., W. A. Van Der Sluys, and K. Hour. "Effect of Loading Rate on Fracture Toughness of Pressure Vessel Steels." Journal of Pressure Vessel Technology 122, no. 2 (March 7, 2000): 125–29. http://dx.doi.org/10.1115/1.556176.
Full textZhang, Ya Lin, and Hu Hui. "Investigation of Mechanical Properties and Ductile-Brittle Transition Behaviors of SA738Gr.B Steel Used as Reactor Containment." Key Engineering Materials 795 (March 2019): 66–73. http://dx.doi.org/10.4028/www.scientific.net/kem.795.66.
Full textWallin, Kim. "Master curve analysis of the “Euro” fracture toughness dataset." Engineering Fracture Mechanics 69, no. 4 (March 2002): 451–81. http://dx.doi.org/10.1016/s0013-7944(01)00071-6.
Full textIwadate, T., Y. Tanaka, and H. Takemata. "Prediction of Fracture Toughness KIC Transition Curves of Pressure Vessel Steels From Charpy V-Notch Impact Test Results." Journal of Pressure Vessel Technology 116, no. 4 (November 1, 1994): 353–58. http://dx.doi.org/10.1115/1.2929601.
Full textNagel, G., and J. G. Blauel. "Evaluation of the standard master curve for fracture toughness determination." Nuclear Engineering and Design 190, no. 1-2 (June 1999): 159–69. http://dx.doi.org/10.1016/s0029-5493(98)00321-5.
Full textLambrigger, M. "Apparent fracture toughness master curve of a zirconia—alumina composite." Philosophical Magazine A 77, no. 2 (February 1998): 363–74. http://dx.doi.org/10.1080/01418619808223758.
Full textEricksonKirk, Mark, and Marjorie EricksonKirk. "An upper-shelf fracture toughness master curve for ferritic steels." International Journal of Pressure Vessels and Piping 83, no. 8 (August 2006): 571–83. http://dx.doi.org/10.1016/j.ijpvp.2006.05.001.
Full textBhowmik, Sumit, Prasanta Sahoo, Sanjib Kumar Acharyya, Sankar Dhar, and Jayanta Chattopadhyay. "Effect of Microstructure Degradation on Fracture Toughness of 20MnMoNi55 Steel in DBT Region." International Journal of Manufacturing, Materials, and Mechanical Engineering 6, no. 3 (July 2016): 11–27. http://dx.doi.org/10.4018/ijmmme.2016070102.
Full textNeimitz, Andrzej, Ihor Dzioba, and Tadeusz Pala. "Master Curve of High-Strength Ferritic Steel S960-QC." Key Engineering Materials 598 (January 2014): 178–83. http://dx.doi.org/10.4028/www.scientific.net/kem.598.178.
Full textMueller, Pablo, P. Spätig, R. Bonadé, G. R. Odette, and D. Gragg. "Fracture toughness master-curve analysis of the tempered martensitic steel Eurofer97." Journal of Nuclear Materials 386-388 (April 2009): 323–27. http://dx.doi.org/10.1016/j.jnucmat.2008.12.122.
Full textMIURA, Naoki, and Naoki SONEDA. "Evaluation of Fracture Toughness by Master Curve Approach Using Miniature Specimens." TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series A 77, no. 777 (2011): 680–84. http://dx.doi.org/10.1299/kikaia.77.680.
Full textYoon, Ji-Hyun, and Eui-Pak Yoon. "Fracture toughness and the master curve for modified 9Cr−1Mo steel." Metals and Materials International 12, no. 6 (December 2006): 477–82. http://dx.doi.org/10.1007/bf03027747.
Full textSpätig, Philippe, V. Mazánová, S. Suman, and Hans Peter Seifert. "Evaluation of Quasi-Static and Dynamic Fracture Toughness on the Low-Alloy Reactor Pressure Vessel Steel JRQ in the Transition Region." Key Engineering Materials 827 (December 2019): 294–99. http://dx.doi.org/10.4028/www.scientific.net/kem.827.294.
Full textAdachi, T., M. Osaki, A. Yamaji, and M. Gamou. "Time-temperature dependence of the fracture toughness of a poly(phenylene sulphide) polymer." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 217, no. 1 (January 1, 2003): 29–34. http://dx.doi.org/10.1177/146442070321700104.
Full textMoattari, Mastaneh, and Iradj Sattari-Far. "Modification of fracture toughness Master Curve considering the crack-tip Q -constraint." Theoretical and Applied Fracture Mechanics 90 (August 2017): 43–52. http://dx.doi.org/10.1016/j.tafmec.2017.02.012.
Full textMIURA, Naoki, and Naoki SONEDA. "1008 Evaluation of Fracture Toughness by Master Curve Approach Using Miniature Specimens." Proceedings of the Materials and Mechanics Conference 2010 (2010): 1200–1202. http://dx.doi.org/10.1299/jsmemm.2010.1200.
Full textHuh, Nam Su, Ludwig Stumpfrock, Xaver Schuler, and Eberhard Roos. "Quantification of Crack-Tip Constraint Effect on Master Curve Reference Temperature Based on Two-Parameter Approach." Solid State Phenomena 110 (March 2006): 89–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.110.89.
Full textSokolov, M. A. "Statistical Analysis of the ASME KIc Database." Journal of Pressure Vessel Technology 120, no. 1 (February 1, 1998): 24–28. http://dx.doi.org/10.1115/1.2841880.
Full textDean, S. W., R. K. Nanstad, M. A. Sokolov, and D. E. McCabe. "Applicability of the Fracture Toughness Master Curve to Irradiated Highly Embrittled Steel and Intergranular Fracture." Journal of ASTM International 5, no. 3 (2008): 101346. http://dx.doi.org/10.1520/jai101346.
Full textHIROTA, Takatoshi, and Kentaro YOSHIMOTO. "Development of fracture toughness curve for PTS evaluation of reactor pressure vessels incorporating Master curve concept." Transactions of the JSME (in Japanese) 85, no. 873 (2019): 18–00369. http://dx.doi.org/10.1299/transjsme.18-00369.
Full textMeshii, Toshiyuki. "Characterization of fracture toughness based on yield stress and successful application to construct a lower-bound fracture toughness master curve." Engineering Failure Analysis 116 (October 2020): 104713. http://dx.doi.org/10.1016/j.engfailanal.2020.104713.
Full textYoon, K. K., and K. Hour. "Dynamic fracture toughness test and master curve method analysis of IAEA JRQ material." Nuclear Engineering and Design 212, no. 1-3 (March 2002): 59–65. http://dx.doi.org/10.1016/s0029-5493(01)00480-0.
Full textLucon, Enrico, Marc Scibetta, S. Kalluri, R. M. McGaw, A. Neimitz, and S. W. Dean. "Application of Advanced Master Curve Approaches to the EURO Fracture Toughness Data Set." Journal of ASTM International 7, no. 1 (2010): 102403. http://dx.doi.org/10.1520/jai102403.
Full textQian, Guian, Wei-Sheng Lei, and Markus Niffenegger. "A new local approach model for cleavage fracture in ferritic steels and its validation." MATEC Web of Conferences 165 (2018): 22035. http://dx.doi.org/10.1051/matecconf/201816522035.
Full textZhang, Ya Lin, Hu Hui, Jun Bao Zhang, Zhong Qiang Zhou, Xindan Hu, and Xiangchun Cong. "Prediction of fracture toughness of SA738Gr.B steel in the ductile-brittle transition using master curve method and bimodal master curve method." International Journal of Pressure Vessels and Piping 182 (May 2020): 104033. http://dx.doi.org/10.1016/j.ijpvp.2019.104033.
Full textKim, Min Chul, Bong Sang Lee, Won Jon Yang, and Jun Hwa Hong. "Determination of the Key Microstructural Parameter for the Cleavage Fracture Toughness of Reactor Pressure Vessel Steels in the Transition Region." Key Engineering Materials 297-300 (November 2005): 1672–77. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.1672.
Full textKim, Byung Jun, Ryuta Kasada, Akihiko Kimura, Eiichi Wakai, and Hiroyasu Tanigawa. "Application of master curve method to the evaluation of fracture toughness of F82H steels." Journal of Nuclear Materials 442, no. 1-3 (November 2013): S38—S42. http://dx.doi.org/10.1016/j.jnucmat.2013.03.079.
Full textYamamoto, T., G. R. Odette, D. Gragg, H. Kurishita, H. Matsui, W. J. Yang, M. Narui, and M. Yamazaki. "Evaluation of fracture toughness master curve shifts for JMTR irradiated F82H using small specimens." Journal of Nuclear Materials 367-370 (August 2007): 593–98. http://dx.doi.org/10.1016/j.jnucmat.2007.03.046.
Full textMIURA, Naoki, and Naoki SONEDA. "A203 Fracture Toughness Evaluation of Japanese Reactor Pressure Vessel Steels Using Master Curve Approach." Proceedings of the National Symposium on Power and Energy Systems 2008.13 (2008): 285–88. http://dx.doi.org/10.1299/jsmepes.2008.13.285.
Full textMeshii, Toshiyuki. "Spreadsheet-based method for predicting temperature dependence of fracture toughness in ductile-to-brittle temperature region." Advances in Mechanical Engineering 11, no. 8 (August 2019): 168781401987089. http://dx.doi.org/10.1177/1687814019870897.
Full textServer, William, Stan Rosinski, Randy Lott, Charles Kim, and Dennis Weakland. "Application of Master Curve fracture toughness for reactor pressure vessel integrity assessment in the USA." International Journal of Pressure Vessels and Piping 79, no. 8-10 (August 2002): 701–13. http://dx.doi.org/10.1016/s0308-0161(02)00073-x.
Full textMESHII, Toshiyuki. "Ferritic steel that ASTM E1921 master curve failed to characterize its fracture toughness temperature dependence." Transactions of the JSME (in Japanese) 85, no. 873 (2019): 18–00431. http://dx.doi.org/10.1299/transjsme.18-00431.
Full textLee, Ki-Hyoung, Min-Chul Kim, Bong-Sang Lee, and Dang-Moon Wee. "Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels." Journal of Nuclear Materials 403, no. 1-3 (August 2010): 68–74. http://dx.doi.org/10.1016/j.jnucmat.2010.05.029.
Full textLucon, Enrico, Marc Scibetta, Robert Gérard, Jeremy T. Busby, Brady Hanson, and S. W. Dean. "Analysis of the Belgian Surveillance Fracture Toughness Database Using Conventional and Advanced Master Curve Approaches." Journal of ASTM International 6, no. 3 (2009): JAI101897. http://dx.doi.org/10.1520/jai101897.
Full textMIURA, Naoki, Naoki SONEDA, Shu SAWAI, and Shinsuke SAKAI. "GS0902 Proposal of Rational Determination of Fracture Toughness Lower-Bound Curves by Master Curve Approach : Part I Applicability of Master Curve Approach for Japanese Pressure Vessel Steels." Proceedings of the Materials and Mechanics Conference 2008 (2008): _GS0902–1_—_GS0902–2_. http://dx.doi.org/10.1299/jsmemm.2008._gs0902-1_.
Full textLin, Yun, Wen Yang, Zhen Feng Tong, and Guang Sheng Ning. "Fracture Toughness Analysis of the China RPV Steel with Miniaturized Specimen." Materials Science Forum 850 (March 2016): 41–46. http://dx.doi.org/10.4028/www.scientific.net/msf.850.41.
Full textDlouhý, Ivo, Luděk Stratil, and Filip Šiška. "Subsized Specimens for Fracture Resistance Characterisation Including Transferability Issues." Key Engineering Materials 741 (June 2017): 110–15. http://dx.doi.org/10.4028/www.scientific.net/kem.741.110.
Full textSreenivasan, P. R., C. G. Shastry, M. D. Mathew, K. Bhanu Sankara Rao, S. L. Mannan, and G. Bandyopadhyay. "Dynamic Fracture Toughness and Charpy Transition Properties of a Service-Exposed 2.25Cr-1Mo Reheater Header Pipe." Journal of Engineering Materials and Technology 125, no. 2 (April 1, 2003): 227–33. http://dx.doi.org/10.1115/1.1543969.
Full textBhowmik, S., P. Sahoo, S. K. Acharyya, J. Chattopadhyay, and S. Dhar. "Application and comparative study of the master curve methodology for fracture toughness characterization of 20MnMoNi55 steel." Materials & Design 39 (August 2012): 309–17. http://dx.doi.org/10.1016/j.matdes.2012.02.050.
Full textHesse, Ann Christin, Thomas Nitschke-Pagel, and Klaus Dilger. "Investigations on the Fracture Toughness of Electron Beam Welded Steels." Key Engineering Materials 713 (September 2016): 74–77. http://dx.doi.org/10.4028/www.scientific.net/kem.713.74.
Full textWallin, Kim R. W., Gerhard Nagel, Elisabeth Keim, and Dieter Siegele. "Estimation of Master Curve Based RTTO Reference Temperature From CVN Data." Journal of Pressure Vessel Technology 129, no. 3 (June 8, 2006): 420–25. http://dx.doi.org/10.1115/1.2748823.
Full textChen, Zeng, Jianhua Pan, Ting Jin, Zhanyong Hong, and Yucheng Wu. "Estimation of fracture toughness of 16MnDR steel using Master Curve method and Charpy V-notch impact energy." Theoretical and Applied Fracture Mechanics 96 (August 2018): 443–51. http://dx.doi.org/10.1016/j.tafmec.2018.06.007.
Full textSerrano, M., F. J. Perosanz, and J. Lapeña. "Direct measurement of reactor pressure vessel steels fracture toughness: Master Curve concept and instrumented Charpy-V test." International Journal of Pressure Vessels and Piping 77, no. 10 (August 2000): 605–12. http://dx.doi.org/10.1016/s0308-0161(00)00033-8.
Full textJensen, Elin A., Will Hansen, and Rune Brincker. "Engineering Solution for the Uniform Strength of Partially Cracked Concrete." Transportation Research Record: Journal of the Transportation Research Board 1919, no. 1 (January 2005): 16–22. http://dx.doi.org/10.1177/0361198105191900102.
Full textBhowmik, S., A. Chattopadhyay, T. Bose, S. K. Acharyya, P. Sahoo, J. Chattopadhyay, and S. Dhar. "Estimation of fracture toughness of 20MnMoNi55 steel in the ductile to brittle transition region using master curve method." Nuclear Engineering and Design 241, no. 8 (August 2011): 2831–38. http://dx.doi.org/10.1016/j.nucengdes.2011.05.033.
Full textOh, Yong-Jun, Bong-Sang Lee, and Jun-Hwa Hong. "The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds." Journal of Nuclear Materials 301, no. 2-3 (March 2002): 108–17. http://dx.doi.org/10.1016/s0022-3115(02)00716-x.
Full textDriessen, N., and Richard E. Clegg. "Use of the Master Curve to Investigate the Effect of Post-Weld Heat Treatment on ASTM A106B." Advanced Materials Research 41-42 (April 2008): 483–89. http://dx.doi.org/10.4028/www.scientific.net/amr.41-42.483.
Full textSAWAI, Shu, Shinsuke SAKAI, Naoki MIURA, and Naoki SONEDA. "GS0903 Proposal of Rational Determination of Fracture Toughness Lower-Bound Curves by Master Curve Approach : Part II Proposal of Lower-Bound Curves Based on Reliability Engineering." Proceedings of the Materials and Mechanics Conference 2008 (2008): _GS0903–1_—_GS0903–2_. http://dx.doi.org/10.1299/jsmemm.2008._gs0903-1_.
Full textMeshii, Toshiyuki, Goh Yakushi, Yoichi Takagishi, Yohei Fujimoto, and Kenichi Ishihara. "Quantitative comparison of the predictions of fracture toughness temperature dependence using ASTM E1921 master curve and stress distribution T-scaling methods." Engineering Failure Analysis 111 (April 2020): 104458. http://dx.doi.org/10.1016/j.engfailanal.2020.104458.
Full text