Academic literature on the topic 'Fraudulent detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fraudulent detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fraudulent detection"
Awhad, Rahul, Saurabh Jayswal, Adesh More, and Jyoti Kundale. "Fraudulent Face Image Detection." ITM Web of Conferences 32 (2020): 03005. http://dx.doi.org/10.1051/itmconf/20203203005.
Full textIndriani, Poppy. "FRAUND DIAMOND DALAM MENDETEKSI KECURANGAN LAPORAN KEUANGAN." I-Finance: a Research Journal on Islamic Finance 3, no. 2 (January 29, 2018): 161. http://dx.doi.org/10.19109/ifinance.v3i2.1690.
Full textYu, Frank, and Xiaoyun Yu. "Corporate Lobbying and Fraud Detection." Journal of Financial and Quantitative Analysis 46, no. 6 (June 6, 2011): 1865–91. http://dx.doi.org/10.1017/s0022109011000457.
Full textJain, Abhisu, Mayank Arora, Anoushka Mehra, and Aviva Munshi. "Anomaly Detection Algorithms in Financial Data." International Journal of Engineering and Advanced Technology 10, no. 5 (June 30, 2021): 76–78. http://dx.doi.org/10.35940/ijeat.e2598.0610521.
Full textIndriyani, Ely, and Dhini Suryandari. "DETECTION OF FRAUDULENT FINANCIAL STATEMENT THROUGH PENTAGON THEORY WITH AUDIT COMMITTEE AS MODERATING." EAJ (Economic and Accounting Journal) 4, no. 1 (April 15, 2021): 35. http://dx.doi.org/10.32493/eaj.v4i1.y2021.p35-47.
Full textLiu, Hankun, Daojing He, and Sammy Chan. "Fraudulent News Headline Detection with Attention Mechanism." Computational Intelligence and Neuroscience 2021 (March 15, 2021): 1–7. http://dx.doi.org/10.1155/2021/6679661.
Full textPriyadarshini, Aishwarya, Sanhita Mishra, Debani Prasad Mishra, Surender Reddy Salkuti, and Ramakanta Mohanty. "Fraudulent credit card transaction detection using soft computing techniques." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 3 (September 1, 2021): 1634. http://dx.doi.org/10.11591/ijeecs.v23.i3.pp1634-1642.
Full textBo Sun, Yang Xiao, and Ruhai Wang. "Detection of Fraudulent Usage in Wireless Networks." IEEE Transactions on Vehicular Technology 56, no. 6 (November 2007): 3912–23. http://dx.doi.org/10.1109/tvt.2007.901875.
Full textPandian, A., and Mohamed Abdul Karim. "Detection of Fraudulent Emails by Authorship Extraction." International Journal of Computer Applications 41, no. 7 (March 31, 2012): 7–12. http://dx.doi.org/10.5120/5551-7619.
Full textIndarto, Stefani Lily, and Imam Ghozali. "Fraud diamond: Detection analysis on the fraudulent financial reporting." Risk Governance and Control: Financial Markets and Institutions 6, no. 4 (2016): 116–23. http://dx.doi.org/10.22495/rcgv6i4c1art1.
Full textDissertations / Theses on the topic "Fraudulent detection"
Jóhannsson, Jökull. "Detecting fraudulent users using behaviour analysis." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224196.
Full textMed den ökande användningen av strömmande media ökar också möjligheterna till missbruk av dessa platformar samt bedrägeri. Ett typiskt fall av bedrägeri är att använda automatiserade program för att strömma media, och därigenom generera intäkter samt att öka en artist popularitet. Med den växande ekonomin kring strömmande media växer också incitamentet till bedrägeriförsök. Denna studies fokus är att finna användarmönster och använda denna kunskap för att träna modeller som kan upptäcka bedrägeriförsök. The maskininlärningsalgoritmer som undersökts är Logistic Regression, Support Vector Machines, Random Forest och Artificiella Neurala Nätverk. Denna studie jämför effektiviteten och precisionen av dessa algoritmer, som tränats på obalanserad data som innehåller olika procentandelar av bedrägeriförsök. Modellerna som genererats av de olika algoritmerna har sedan utvärderas med hjälp av Precision Recall Area Under the Curve (PR AUC) och F1-score. Resultaten av studien visar på liknande prestanda mellan modellerna som genererats av de utvärderade algoritmerna. Detta gäller både när de tränats på balanserad såväl som obalanserad data. Resultaten visar också att Random Forestbaserade modeller genererar bättre resultat för alla dataset som testats i detta experiment.
Orive, Múgica Iker. "Technical identifiers of fraudulent web pages, a systematic literature review." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19048.
Full textHays, Jerry B. "An Investigation of Management Accountants Intention to Report Fraudulent Accounting Activity: Applying the Theory of Planned Behavior." NSUWorks, 2013. http://nsuworks.nova.edu/hsbe_etd/40.
Full textRowson, David. "The problem with fraudulent solicitors : issues of trust, investigation and the self-regulation of the legal profession." Thesis, Teesside University, 2009. http://hdl.handle.net/10149/112684.
Full textGleichmann, Tobias [Verfasser], Michael [Akademischer Betreuer] Grüning, and Jörg R. [Gutachter] Werner. "The detection of fraudulent financial statements using textual and financial data / Tobias Gleichmann ; Gutachter: Jörg R. Werner ; Betreuer: Michael Grüning." Ilmenau : TU Ilmenau, 2020. http://d-nb.info/1221063383/34.
Full textAndrée, Anton. "Catch the fraudster : The development of a machine learning based fraud filter." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424464.
Full textCeglia, Cesarina. "A comparison of parametric and non-parametric methods for detecting fraudulent automobile insurance claims." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10147317.
Full textFraudulent automobile insurance claims are not only a loss for insurance companies, but also for their policyholders. In order for insurance companies to prevent significant loss from false claims, they must raise their premiums for the policyholders. The goal of this research is to develop a decision making algorithm to determine whether a claim is classified as fraudulent based on the observed characteristics of a claim, which can in turn help prevent future loss. The data includes 923 cases of false claims, 14,497 cases of true claims and 33 describing variables from the years 1994 to 1996. To achieve the goal of this research, parametric and nonparametric methods are used to determine what variables play a major role in detecting fraudulent claims. These methods include logistic regression, the LASSO (least absolute shrinkage and selection operator) method, and Random Forests. This research concluded that a non-parametric Random Forests model classified fraudulent claims with the highest accuracy and best balance between sensitivity and specificity. Variable selection and importance are also implemented to improve the performance at which fraudulent claims are accurately classified.
Yin, Zi-Hau, and 鄞子豪. "A Hybrid Structure for Fraudulent Financial Statement Detection." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/28936497643396192421.
Full text中國文化大學
會計學系
102
The study proposed a novel mechanism for fraudulent financial statement detection. The mechanism consists of two essential parts: one is ensemble feature selection strategy and the other is decision tree. The ensemble feature selection strategy is performed by two techniques, namely t-test and logistic regression. Both of them were used to determine the essential features. After determine the essential features, the selected features were fed into decision tree to construct the forecasting model. The 198 research samples ranged from 2000 to 2010 were considered in this study. According to our research finding, the union ensemble strategy outperforms than other ensemble strategies. In addition, the study also examines the effectiveness of corporate governance indictors. The results indicated that the corporate governance indicators can improve the forecasting performance of the introduced model.
Chiang, Wen-Yu, and 江玟諭. "Fraudulent Financial Statement Detection Using Data Mining Techniques." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/jqy453.
Full text國立臺灣大學
會計學研究所
107
This study attempts to apply data mining techniques on detection of fraudulent financial statements, and investigate whether textual information has information gain for fraudulent financial statements detection. Considering the characteristics of fraud, this study uses Random Forest as data mining techniques to build fraud detection model. Structured variables are selected based on fraud triangle, and textual information is extracted from letter to shareholders and operation review in annual report. The result shows that Random Forest achieved higher classification accuracy than traditional regression model, and the text in annual report has no explicit information gain for distinguishing fraudulent and non-fraudulent companies. However, it is worth noting that the importance of uncertain words in annual report ranks 13 among 83 variables. This implies that tentative words in annual report may be regarded as an important indicator to fraudulent financial statement occurrence.
Su, Jian-Jia, and 蘇健嘉. "Modeling Real-Time Call Behaviors for Fraudulent Phone Call Detection." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/r4zqka.
Full text國立臺灣大學
資訊工程學研究所
107
The main purpose of this thesis is to propose a model that can detect whether a phone number is a fraud in real-time. There are two problems in detecting fraud. Some methods can only apply at the same time interval as training data. On the other hand, a model that can apply to a new phone number have low precision. We propose a modularized call representation and detection model. By two-phases training, our model can generate call representations and uses the call representations to detect fraud. In the first phase, call behavior prediction training allows model generating call representation containing rich information. We then train a simple classifier to detect fraud based on the call representation. Our model outperforms the random baseline and beats baseline model which lacking the call behavior module. As for future work, multi phone number modeling can be used to detect complex fraud because Some fraud is cooperating between several phone numbers.
Books on the topic "Fraudulent detection"
Ray, Sumantra (Shumone), Sue Fitzpatrick, Rajna Golubic, Susan Fisher, and Sarah Gibbings, eds. Fraud and misconduct. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199608478.003.0025.
Full textBook chapters on the topic "Fraudulent detection"
Arunkumar, C., Srijha Kalyan, and Hamsini Ravishankar. "Fraudulent Detection in Healthcare Insurance." In Lecture Notes in Electrical Engineering, 1–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9019-1_1.
Full textSánchez-Paniagua, Manuel, Eduardo Fidalgo, Enrique Alegre, and Francisco Jáñez-Martino. "Fraudulent E-Commerce Websites Detection Through Machine Learning." In Lecture Notes in Computer Science, 267–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86271-8_23.
Full textMaktabar, Mahdi, Anazida Zainal, Mohd Aizaini Maarof, and Mohamad Nizam Kassim. "Content Based Fraudulent Website Detection Using Supervised Machine Learning Techniques." In Hybrid Intelligent Systems, 294–304. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76351-4_30.
Full textRaghavendra, S. P., Shoieb Ahamed, Ajit Danti, and D. Rohit. "Detection of Fraudulent Alteration of Bank Cheques Using Image Processing Techniques." In Communications in Computer and Information Science, 469–77. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0507-9_39.
Full textKhan, Ashphak, Tejpal Singh, and Amit Sinhal. "Observation Probability in Hidden Markov Model for Credit Card Fraudulent Detection System." In Advances in Intelligent Systems and Computing, 751–60. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1602-5_80.
Full textKhoo, Eric, Anazida Zainal, Nurfadilah Ariffin, Mohd Nizam Kassim, Mohd Aizaini Maarof, and Majid Bakhtiari. "Fraudulent e-Commerce Website Detection Model Using HTML, Text and Image Features." In Advances in Intelligent Systems and Computing, 177–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49345-5_19.
Full textBhushan Sharma, Arpit, and Brijesh Singh. "Performance Evaluation and Identification of Optimal Classifier for Credit Card Fraudulent Detection." In Studies in Computational Intelligence, 137–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68291-0_12.
Full textGoyal, Nidhi, Niharika Sachdeva, and Ponnurangam Kumaraguru. "Spy the Lie: Fraudulent Jobs Detection in Recruitment Domain using Knowledge Graphs." In Knowledge Science, Engineering and Management, 612–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82147-0_50.
Full textZainab, Kaneez, Namrata Dhanda, and Qamar Abbas. "Analysis of Various Boosting Algorithms Used for Detection of Fraudulent Credit Card Transactions." In Information and Communication Technology for Competitive Strategies (ICTCS 2020), 1083–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0882-7_98.
Full textKusy, Maciej, and Piotr A. Kowalski. "Detection of Fraudulent Credit Card Transactions by Computational Intelligence Models as a Tool in Digital Forensics." In Studies in Computational Intelligence, 205–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74970-5_24.
Full textConference papers on the topic "Fraudulent detection"
Qayyum, Sameer, Shaheer Mansoor, Adeel Khalid, Khushbakht, Zahid Halim, and A. Rauf Baig. "Fraudulent call detection for mobile networks." In 2010 International Conference on Information and Emerging Technologies (ICIET). IEEE, 2010. http://dx.doi.org/10.1109/iciet.2010.5625718.
Full textQayyum, Sameer, Shaheer Mansoor, Adeel Khalid, Khushbakht, Zahid Halim, and A. Rauf Baig. "Fraudulent Call Detection for Mobile Networks." In 2010 International Conference on Information Science and Applications. IEEE, 2010. http://dx.doi.org/10.1109/icisa.2010.5480355.
Full textRajesh, Kartik, Aditya Kumar, and Rajesh Kadu. "Fraudulent News Detection using Machine Learning Approaches." In 2019 Global Conference for Advancement in Technology (GCAT). IEEE, 2019. http://dx.doi.org/10.1109/gcat47503.2019.8978436.
Full textZheng, Wenbo, Lan Yan, Chao Gou, and Fei-Yue Wang. "Federated Meta-Learning for Fraudulent Credit Card Detection." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/642.
Full textMareeswari, V., and S. Sundareswari. "Data stream mining based resilient identity fraudulent detection." In 2014 International Conference on Information Communication and Embedded Systems (ICICES). IEEE, 2014. http://dx.doi.org/10.1109/icices.2014.7033914.
Full textLee, Vincent, and Haozheng Wei. "Exploratory simulation models for fraudulent detection in Bitcoin system." In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2016. http://dx.doi.org/10.1109/iciea.2016.7603912.
Full textJian, Li, Yang Ruicheng, and Guo Rongrong. "Self-Organizing Map Method for Fraudulent Financial Data Detection." In 2016 3rd International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2016. http://dx.doi.org/10.1109/icisce.2016.135.
Full textSeemakurthi, Prasad, Shuhao Zhang, and Yibing Qi. "Detection of fraudulent financial reports with machine learning techniques." In 2015 Systems and Information Engineering Design Symposium. IEEE, 2015. http://dx.doi.org/10.1109/sieds.2015.7117005.
Full textAbdulSattar, Khadija, and Mustafa Hammad. "Fraudulent Transaction Detection in FinTech using Machine Learning Algorithms." In 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). IEEE, 2020. http://dx.doi.org/10.1109/3ict51146.2020.9312025.
Full textAbdulSattar, Khadija, and Mustafa Hammad. "Fraudulent Transaction Detection in FinTech using Machine Learning Algorithms." In 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). IEEE, 2020. http://dx.doi.org/10.1109/3ict51146.2020.9312025.
Full textReports on the topic "Fraudulent detection"
Dutra, Lauren M., Matthew C. Farrelly, Brian Bradfield, Jamie Ridenhour, and Jamie Guillory. Modeling the Probability of Fraud in Social Media in a National Cannabis Survey. RTI Press, September 2021. http://dx.doi.org/10.3768/rtipress.2021.mr.0046.2109.
Full text