Contents
Academic literature on the topic 'Fréchet derivative operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fréchet derivative operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fréchet derivative operators"
CHUNG, B. K., K. G. JOO, and SOONKEON NAM. "HAMILTONIAN FORMULATION OF SL(3) Ur-KdV EQUATION." Modern Physics Letters A 08, no. 31 (1993): 2927–36. http://dx.doi.org/10.1142/s0217732393003342.
Full textMursaleen, M., S. A. Mohiuddine, Q. M. Danish Lohani, and M. Farhan Khan. "Nonlinear operators on fuzzy 2-normed spaces and Fréchet derivative." Journal of Intelligent & Fuzzy Systems 25, no. 4 (2013): 1043–51. http://dx.doi.org/10.3233/ifs-120709.
Full textMursaleen, M., and S. A. Mohiuddine. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative." Chaos, Solitons & Fractals 42, no. 2 (2009): 1010–15. http://dx.doi.org/10.1016/j.chaos.2009.02.041.
Full textArgyros, Ioannis K., and Santhosh George. "MODIFICATION OF THE KANTOROVICH-TYPE CONDITIONS FOR NEWTON'S METHOD INVOLVING TWICE FRECHET DIFFERENTIABLE OPERATORS." Asian-European Journal of Mathematics 06, no. 03 (2013): 1350026. http://dx.doi.org/10.1142/s1793557113500265.
Full textArgyros, Gus I., Michael I. Argyros, Samundra Regmi, Ioannis K. Argyros, and Santhosh George. "On the Solution of Equations by Extended Discretization." Computation 8, no. 3 (2020): 69. http://dx.doi.org/10.3390/computation8030069.
Full textSingh, K., and R. K. Gupta. "On symmetries and invariant solutions of a coupled KdV system with variable coefficients." International Journal of Mathematics and Mathematical Sciences 2005, no. 23 (2005): 3711–25. http://dx.doi.org/10.1155/ijmms.2005.3711.
Full textGilliam, D. S., T. Hohage, X. Ji, and F. Ruymgaart. "The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications." International Journal of Mathematics and Mathematical Sciences 2009 (2009): 1–17. http://dx.doi.org/10.1155/2009/239025.
Full textArgyros, Ioannis K., Ángel Alberto Magreñán, Lara Orcos, and Íñigo Sarría. "Unified Local Convergence for Newton’s Method and Uniqueness of the Solution of Equations under Generalized Conditions in a Banach Space." Mathematics 7, no. 5 (2019): 463. http://dx.doi.org/10.3390/math7050463.
Full textArgyros, Ioannis K., Yeol Cho, and Hongmin Ren. "Convergence of Halley’s method for operators with the bounded second Fréchet-derivative in Banach spaces." Journal of Inequalities and Applications 2013, no. 1 (2013): 260. http://dx.doi.org/10.1186/1029-242x-2013-260.
Full textSingh, Sukhjit, Eulalia Martínez, Abhimanyu Kumar, and D. K. Gupta. "Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations." Mathematics 8, no. 3 (2020): 384. http://dx.doi.org/10.3390/math8030384.
Full text