Journal articles on the topic 'Fréchet derivative operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 journal articles for your research on the topic 'Fréchet derivative operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CHUNG, B. K., K. G. JOO, and SOONKEON NAM. "HAMILTONIAN FORMULATION OF SL(3) Ur-KdV EQUATION." Modern Physics Letters A 08, no. 31 (1993): 2927–36. http://dx.doi.org/10.1142/s0217732393003342.
Full textMursaleen, M., S. A. Mohiuddine, Q. M. Danish Lohani, and M. Farhan Khan. "Nonlinear operators on fuzzy 2-normed spaces and Fréchet derivative." Journal of Intelligent & Fuzzy Systems 25, no. 4 (2013): 1043–51. http://dx.doi.org/10.3233/ifs-120709.
Full textMursaleen, M., and S. A. Mohiuddine. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative." Chaos, Solitons & Fractals 42, no. 2 (2009): 1010–15. http://dx.doi.org/10.1016/j.chaos.2009.02.041.
Full textArgyros, Ioannis K., and Santhosh George. "MODIFICATION OF THE KANTOROVICH-TYPE CONDITIONS FOR NEWTON'S METHOD INVOLVING TWICE FRECHET DIFFERENTIABLE OPERATORS." Asian-European Journal of Mathematics 06, no. 03 (2013): 1350026. http://dx.doi.org/10.1142/s1793557113500265.
Full textArgyros, Gus I., Michael I. Argyros, Samundra Regmi, Ioannis K. Argyros, and Santhosh George. "On the Solution of Equations by Extended Discretization." Computation 8, no. 3 (2020): 69. http://dx.doi.org/10.3390/computation8030069.
Full textSingh, K., and R. K. Gupta. "On symmetries and invariant solutions of a coupled KdV system with variable coefficients." International Journal of Mathematics and Mathematical Sciences 2005, no. 23 (2005): 3711–25. http://dx.doi.org/10.1155/ijmms.2005.3711.
Full textGilliam, D. S., T. Hohage, X. Ji, and F. Ruymgaart. "The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications." International Journal of Mathematics and Mathematical Sciences 2009 (2009): 1–17. http://dx.doi.org/10.1155/2009/239025.
Full textArgyros, Ioannis K., Ángel Alberto Magreñán, Lara Orcos, and Íñigo Sarría. "Unified Local Convergence for Newton’s Method and Uniqueness of the Solution of Equations under Generalized Conditions in a Banach Space." Mathematics 7, no. 5 (2019): 463. http://dx.doi.org/10.3390/math7050463.
Full textArgyros, Ioannis K., Yeol Cho, and Hongmin Ren. "Convergence of Halley’s method for operators with the bounded second Fréchet-derivative in Banach spaces." Journal of Inequalities and Applications 2013, no. 1 (2013): 260. http://dx.doi.org/10.1186/1029-242x-2013-260.
Full textSingh, Sukhjit, Eulalia Martínez, Abhimanyu Kumar, and D. K. Gupta. "Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations." Mathematics 8, no. 3 (2020): 384. http://dx.doi.org/10.3390/math8030384.
Full textMontagu, E. L., and John Norbury. "Solving nonlinear non-local problems using positive square-root operators." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2239 (2020): 20190817. http://dx.doi.org/10.1098/rspa.2019.0817.
Full textDerbazi, Choukri, Zidane Baitiche, Mouffak Benchohra та G. N’Guérékata. "Existence, Uniqueness, and Mittag–Leffler–Ulam Stability Results for Cauchy Problem Involving ψ -Caputo Derivative in Banach and Fréchet Spaces". International Journal of Differential Equations 2020 (13 жовтня 2020): 1–16. http://dx.doi.org/10.1155/2020/6383916.
Full textMahale, Pallavi. "Simplified Iterated Lavrentiev Regularization for Nonlinear Ill-Posed Monotone Operator Equations." Computational Methods in Applied Mathematics 17, no. 2 (2017): 269–85. http://dx.doi.org/10.1515/cmam-2016-0044.
Full textSano, Takashi. "Fréchet derivatives for operator monotone functions." Linear Algebra and its Applications 456 (September 2014): 88–92. http://dx.doi.org/10.1016/j.laa.2013.05.018.
Full textLe Merdy, Christian, and Anna Skripka. "HIGHER ORDER DIFFERENTIABILITY OF OPERATOR FUNCTIONS IN SCHATTEN NORMS." Journal of the Institute of Mathematics of Jussieu 19, no. 6 (2019): 1993–2016. http://dx.doi.org/10.1017/s1474748019000033.
Full textArgyros, Ioannis K., and Á. Alberto Magreñán. "Extending the convergence domain of Newton’s method for twice Fréchet differentiable operators." Analysis and Applications 14, no. 02 (2016): 303–19. http://dx.doi.org/10.1142/s0219530515500013.
Full textMAAS, JAN, and JAN VAN NEERVEN. "ON THE DOMAIN OF NONSYMMETRIC ORNSTEIN–UHLENBECK OPERATORS IN BANACH SPACES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 11, no. 04 (2008): 603–26. http://dx.doi.org/10.1142/s0219025708003245.
Full textFinster, Felix, and Magdalena Lottner. "Banach manifold structure and infinite-dimensional analysis for causal fermion systems." Annals of Global Analysis and Geometry 60, no. 2 (2021): 313–54. http://dx.doi.org/10.1007/s10455-021-09775-4.
Full textDE BEER, RICHARD J. "TAUBERIAN THEOREMS AND SPECTRAL THEORY IN TOPOLOGICAL VECTOR SPACES." Glasgow Mathematical Journal 55, no. 3 (2013): 511–32. http://dx.doi.org/10.1017/s0017089512000699.
Full textBadriev, I. B., V. Ju Bujanov, M. V. Makarov, and N. V. Kalacheva. "Gâteaux and Fréchet derivatives of the operator of geometrically nonlinear bending problem of sandwich plate." Journal of Physics: Conference Series 1158 (February 2019): 022015. http://dx.doi.org/10.1088/1742-6596/1158/2/022015.
Full textDragomir, S. Silvestru. "Reverse Jensen Integral Inequalities for Operator Convex Functions in Terms of Fréchet Derivative." Bulletin of the Iranian Mathematical Society, January 11, 2021. http://dx.doi.org/10.1007/s41980-020-00482-7.
Full textDjordjević, Bogdan D. "Singular Lyapunov operator equations: applications to $$C^*-$$algebras, Fréchet derivatives and abstract Cauchy problems." Analysis and Mathematical Physics 11, no. 4 (2021). http://dx.doi.org/10.1007/s13324-021-00596-z.
Full text