To see the other types of publications on this topic, follow the link: FREE-FREE BOUNDARY.

Journal articles on the topic 'FREE-FREE BOUNDARY'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'FREE-FREE BOUNDARY.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chistyakov, A. E., E. A. Protsenko, and E. F. Timofeeva. "Mathematical modeling of oscillatory processes with a free boundary." COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES 1, no. 1 (2017): 102–12. http://dx.doi.org/10.23947/2587-8999-2017-1-1-102-112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gurevich, Alex. "Boundary regularity for free boundary problems." Communications on Pure and Applied Mathematics 52, no. 3 (1999): 363–403. http://dx.doi.org/10.1002/(sici)1097-0312(199903)52:3<363::aid-cpa3>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yingchun, and Qingqing Sun. "Three-Dimensional Biorthogonal Divergence-Free and Curl-Free Wavelets with Free-Slip Boundary." Journal of Applied Mathematics 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/954717.

Full text
Abstract:
This paper deals with the construction of divergence-free and curl-free wavelets on the unit cube, which satisfies the free-slip boundary conditions. First, interval wavelets adapted to our construction are introduced. Then, we provide the biorthogonal divergence-free and curl-free wavelets with free-slip boundary and simple structure, based on the characterization of corresponding spaces. Moreover, the bases are also stable.
APA, Harvard, Vancouver, ISO, and other styles
4

SUSSMAN, MARK, and PETER SMEREKA. "Axisymmetric free boundary problems." Journal of Fluid Mechanics 341 (June 25, 1997): 269–94. http://dx.doi.org/10.1017/s0022112097005570.

Full text
Abstract:
We present a number of three-dimensional axisymmetric free boundary problems for two immiscible fluids, such as air and water. A level set method is used where the interface is the zero level set of a continuous function while the two fluids are solutions of the incompressible Navier–Stokes equation. We examine the rise and distortion of an initially spherical bubble into cap bubbles and toroidal bubbles. Steady solutions for gas bubbles rising in a liquid are computed, with favourable comparisons to experimental data. We also study the inviscid limit and compare our results with a boundary in
APA, Harvard, Vancouver, ISO, and other styles
5

Dovì, V. G., H. Preisig, and O. Paladino. "Inverse free boundary problems." Applied Mathematics Letters 2, no. 1 (1989): 91–96. http://dx.doi.org/10.1016/0893-9659(89)90125-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lortz, D. "Plane free-boundary equilibria." Plasma Physics and Controlled Fusion 33, no. 1 (1991): 77–89. http://dx.doi.org/10.1088/0741-3335/33/1/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shargorodsky, E., and J. F. Toland. "Bernoulli free-boundary problems." Memoirs of the American Mathematical Society 196, no. 914 (2008): 0. http://dx.doi.org/10.1090/memo/0914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Sung-Ho, and Juncheol Pyo. "Free boundary minimal hypersurfaces with spherical boundary." Mathematische Nachrichten 290, no. 5-6 (2016): 885–89. http://dx.doi.org/10.1002/mana.201500399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edelen, Nick. "The free-boundary Brakke flow." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 758 (2020): 95–137. http://dx.doi.org/10.1515/crelle-2017-0053.

Full text
Abstract:
AbstractWe develop the notion of Brakke flow with free-boundary in a barrier surface. Unlike the classical free-boundary mean curvature flow, the free-boundary Brakke flow must “pop” upon tangential contact with the barrier. We prove a compactness theorem for free-boundary Brakke flows, define a Gaussian monotonicity formula valid at all points, and use this to adapt the local regularity theorem of White [23] to the free-boundary setting. Using Ilmanen’s elliptic regularization procedure [10], we prove existence of free-boundary Brakke flows.
APA, Harvard, Vancouver, ISO, and other styles
10

MATSUSHITA, Osami. "Modelling; Free from boundary condition." Journal of the Japan Society for Precision Engineering 54, no. 5 (1988): 848–52. http://dx.doi.org/10.2493/jjspe.54.848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mendes, Abraão. "Rigidity of free boundary MOTS." Nonlinear Analysis 220 (July 2022): 112841. http://dx.doi.org/10.1016/j.na.2022.112841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Agelmenev, M. E. "The Modeling with Free Boundary." Molecular Crystals and Liquid Crystals 545, no. 1 (2011): 190/[1414]—203/[1427]. http://dx.doi.org/10.1080/15421406.2011.572010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hilhorst, Danielle, and Josephus Hulshof. "A free boundary focusing problem." Proceedings of the American Mathematical Society 121, no. 4 (1994): 1193. http://dx.doi.org/10.1090/s0002-9939-1994-1233975-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dipierro, Serena, Ovidiu Savin, and Enrico Valdinoci. "A Nonlocal Free Boundary Problem." SIAM Journal on Mathematical Analysis 47, no. 6 (2015): 4559–605. http://dx.doi.org/10.1137/140999712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Friedman, Avner. "Free boundary problems in biology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2050 (2015): 20140368. http://dx.doi.org/10.1098/rsta.2014.0368.

Full text
Abstract:
In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.
APA, Harvard, Vancouver, ISO, and other styles
16

Zheng, L. J. "Free boundary ballooning mode representation." Physics of Plasmas 19, no. 10 (2012): 102506. http://dx.doi.org/10.1063/1.4759012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nührenberg, C. "Free-boundary perturbed MHD equilibria." Journal of Physics: Conference Series 401 (December 3, 2012): 012018. http://dx.doi.org/10.1088/1742-6596/401/1/012018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Soltanov, K. N., and E. B. Novruzov. "On a free boundary problem." Izvestiya: Mathematics 66, no. 4 (2002): 807–27. http://dx.doi.org/10.1070/im2002v066n04abeh000398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bensid, Sabri, and S. M. Bouguima. "On a free boundary problem." Nonlinear Analysis: Theory, Methods & Applications 68, no. 8 (2008): 2328–48. http://dx.doi.org/10.1016/j.na.2007.01.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Frolova, E. V. "Free Boundary Problem of Magnetohydrodynamics." Journal of Mathematical Sciences 210, no. 6 (2015): 857–77. http://dx.doi.org/10.1007/s10958-015-2596-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chen, Eugene Y., H. L. Berk, B. Breizman, and L. J. Zheng. "Free-boundary toroidal Alfvén eigenmodes." Physics of Plasmas 18, no. 5 (2011): 052503. http://dx.doi.org/10.1063/1.3575157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cryer, Colin C., and John Crank. "Free and Moving Boundary Problems." Mathematics of Computation 46, no. 174 (1986): 765. http://dx.doi.org/10.2307/2008018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

CRASTER, R. V. "Two related free boundary problems." IMA Journal of Applied Mathematics 52, no. 3 (1994): 253–70. http://dx.doi.org/10.1093/imamat/52.3.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Remizova, E. V. "A problem with free boundary." Journal of Soviet Mathematics 45, no. 3 (1989): 1163–72. http://dx.doi.org/10.1007/bf01096148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Boucherif, Abdelkader, and Sidi Mohammed Bouguima. "On a Free Boundary Problem." Mathematical Methods in the Applied Sciences 19, no. 15 (1996): 1257–64. http://dx.doi.org/10.1002/(sici)1099-1476(199610)19:15<1257::aid-mma834>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Clarelli, Fabrizio, Antonio Fasano, and Roberto Natalini. "Free-boundary models of sulphation." PAMM 7, no. 1 (2007): 1110201–2. http://dx.doi.org/10.1002/pamm.200700288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kuznetsov, V. V., and O. A. Frolovskaya. "Boundary layers in free convection." Journal of Applied Mechanics and Technical Physics 41, no. 3 (2000): 461–69. http://dx.doi.org/10.1007/bf02465297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mikayelyan, Hayk, and Henrik Shahgholian. "Convexity of the free boundary for an exterior free boundary problem involving the perimeter." Communications on Pure & Applied Analysis 12, no. 3 (2013): 1431–43. http://dx.doi.org/10.3934/cpaa.2013.12.1431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Centen, P., M. P. H. Weenink, and W. Schuurman. "Minimum-energy principle for a free-boundary, force-free plasma." Plasma Physics and Controlled Fusion 28, no. 1B (1986): 347–55. http://dx.doi.org/10.1088/0741-3335/28/1b/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gupta, A. K., and D. Surya. "Benard-Marangoni Convection with Free Slip Bottom and Mixed Thermal Boundary Conditions." Mathematical Journal of Interdisciplinary Sciences 2, no. 2 (2014): 141–54. http://dx.doi.org/10.15415/mjis.2014.22011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Okuma, Masaaki, and Qinzhong Shi. "Identification of Principal Rigid Body Modes Under Free-Free Boundary Condition." Journal of Vibration and Acoustics 119, no. 3 (1997): 341–45. http://dx.doi.org/10.1115/1.2889729.

Full text
Abstract:
This paper focuses on the problem of identifying all individual principal rigid body modes and the associated mass or principal inertia of moment, which can be called modal mass, of flexible structures under the free-free boundary condition with fewer multi-location excitations than the number of those modes. The rigid body mass matrix of the structure can be identified by using both the parameters of inertia, which are determined previously by a modal parameter estimation, and the coordinates of measurement points. As all rigid body properties can be obtained from the mass matrix, it becomes
APA, Harvard, Vancouver, ISO, and other styles
32

Yi,, Tong Y., and Parviz E. Nikravesh. "Extraction of Free-Free Modes from Constrained Vibration Data for Flexible Multibody Models." Journal of Vibration and Acoustics 123, no. 3 (2001): 383–89. http://dx.doi.org/10.1115/1.1375814.

Full text
Abstract:
This paper presents a method for identifying the free-free modes of a structure by utilizing the vibration data of the same structure with boundary conditions. In modal formulations for flexible body dynamics, modal data are primary known quantities that are obtained either experimentally or analytically. The vibration measurements may be obtained for a flexible body that is constrained differently than its boundary conditions in a multibody system. For a flexible body model in a multibody system, depending upon the formulation used, we may need a set of free-free modal data or a set of constr
APA, Harvard, Vancouver, ISO, and other styles
33

Samira, Khatmi, and Barkatou Mohammed. "On some overdetermined free boundary problems." ANZIAM Journal 49 (November 22, 2007): 11. http://dx.doi.org/10.21914/anziamj.v49i0.168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hussein, M. S., D. Lesnic, and M. Ivanchov. "Free Boundary Determination in Nonlinear Diffusion." East Asian Journal on Applied Mathematics 3, no. 4 (2013): 295–310. http://dx.doi.org/10.4208/eajam.100913.061113a.

Full text
Abstract:
AbstractFree boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the lsqnonlin routine from the
APA, Harvard, Vancouver, ISO, and other styles
35

Friedman, Avner. "Free boundary problems arising in biology." Discrete & Continuous Dynamical Systems - B 23, no. 1 (2018): 193–202. http://dx.doi.org/10.3934/dcdsb.2018013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

S., L. R., and P. Neittaanmaki. "Numerical Methods for Free Boundary Problems." Mathematics of Computation 63, no. 207 (1994): 426. http://dx.doi.org/10.2307/2153589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

KIM, INWON C. "A Free Boundary Problem with Curvature." Communications in Partial Differential Equations 30, no. 1-2 (2005): 121–38. http://dx.doi.org/10.1081/pde-200044474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Huysmans, G. T. A., J. P. Goedbloed, and W. Kerner. "Free boundary resistive modes in tokamaks." Physics of Fluids B: Plasma Physics 5, no. 5 (1993): 1545–58. http://dx.doi.org/10.1063/1.860894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lewis, John L., and Andrew L. Vogel. "Uniqueness in a Free Boundary Problem." Communications in Partial Differential Equations 31, no. 11 (2006): 1591–614. http://dx.doi.org/10.1080/03605300500455909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lamboley, Jimmy, Yannick Sire, and Eduardo V. Teixeira. "Free boundary problems involving singular weights." Communications in Partial Differential Equations 45, no. 7 (2020): 758–75. http://dx.doi.org/10.1080/03605302.2020.1716003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Reusch, Michael F. "Free boundary skin current magnetohydrodynamic equilibria." Physics of Fluids 31, no. 10 (1988): 2962. http://dx.doi.org/10.1063/1.866953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

De Silva, Daniela, and David Jerison. "A singular energy minimizing free boundary." Journal für die reine und angewandte Mathematik (Crelles Journal) 2009, no. 635 (2009): 1–21. http://dx.doi.org/10.1515/crelle.2009.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hongler, Clément, and Kalle Kytölä. "Ising interfaces and free boundary conditions." Journal of the American Mathematical Society 26, no. 4 (2013): 1107–89. http://dx.doi.org/10.1090/s0894-0347-2013-00774-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Emamizadeh, B., and M. Marras. "Rearrangement Optimization Problems with Free Boundary." Numerical Functional Analysis and Optimization 35, no. 4 (2014): 404–22. http://dx.doi.org/10.1080/01630563.2014.884587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

CHIPPADA, S., T. C. JUE, S. W. JOO, M. F. WHEELER, and B. RAMASWAMY. "Numerical Simulation of Free-Boundary Problems." International Journal of Computational Fluid Dynamics 7, no. 1-2 (1996): 91–118. http://dx.doi.org/10.1080/10618569608940754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Clain, S. "Chemical Attack in Free Boundary Domains." Journal of Applied Analysis 5, no. 1 (1999): 35–58. http://dx.doi.org/10.1515/jaa.1999.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hou, Thomas Y. "Numerical Solutions to Free Boundary Problems." Acta Numerica 4 (January 1995): 335–415. http://dx.doi.org/10.1017/s0962492900002567.

Full text
Abstract:
Many physically interesting problems involve propagation of free surfaces. Vortex-sheet roll-up in hydrodynamic instability, wave interactions on the ocean's free surface, the solidification problem for crystal growth and Hele-Shaw cells for pattern formation are some of the significant examples. These problems present a great challenge to physicists and applied mathematicians because the underlying problem is very singular. The physical solution is sensitive to small perturbations. Naïve discretisations may lead to numerical instabilities. Other numerical difficulties include singularity form
APA, Harvard, Vancouver, ISO, and other styles
48

Fotouhi, Morteza, and Henrik Shahgholian. "A semilinear PDE with free boundary." Nonlinear Analysis: Theory, Methods & Applications 151 (March 2017): 145–63. http://dx.doi.org/10.1016/j.na.2016.11.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

BERON-VERA, F. J., and P. RIPA. "Free boundary effects on baroclinic instability." Journal of Fluid Mechanics 352 (December 10, 1997): 245–64. http://dx.doi.org/10.1017/s0022112097007222.

Full text
Abstract:
The effects of a free boundary on the stability of a baroclinic parallel flow are investigated using a reduced-gravity model. The basic state has uniform density stratification and a parallel flow with uniform vertical shear in thermal-wind balance with the horizontal buoyancy gradient. A finite value of the velocity at the free (lower) boundary requires the interface to have a uniform slope in the direction transversal to that of the flow. Normal-mode perturbations with arbitrary vertical structure are studied in the limit of small Rossby number. This solution is restricted to neither a horiz
APA, Harvard, Vancouver, ISO, and other styles
50

Lions, P. L., and N. Masmoudi. "On a free boundary barotropic model." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 16, no. 3 (1999): 373–410. http://dx.doi.org/10.1016/s0294-1449(99)80018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!