Journal articles on the topic 'Frictional braking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Frictional braking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Zhu Yu. "A Study on Forming Mechanism of Braking Torque on the Friction Surface." Advanced Materials Research 850-851 (December 2013): 200–203. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.200.
Full textHuang, Shan, Jiusheng Bao, Shirong Ge, Yan Yin, and Tonggang Liu. "Design of a frictional–electromagnetic compound disk brake for automotives." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 4 (2019): 1113–22. http://dx.doi.org/10.1177/0954407019864210.
Full textYin, Yan, Jiusheng Bao, Jinge Liu, Chaoxun Guo, Tonggang Liu, and Yangyang Ji. "Braking performance of a novel frictional-magnetic compound disc brake for automobiles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 10 (2018): 2443–54. http://dx.doi.org/10.1177/0954407018791056.
Full textHwang, Jung Ho, Heung Seob Kim, Young Choi, Byeong Soo Kim, and Ki Weon Kang. "The Thermal Analysis of Brake Disc with 3-D Coupled Analysis." Key Engineering Materials 297-300 (November 2005): 305–10. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.305.
Full textYevtushenko, Aleksander A., Piotr Grzes, and Adam Adamowicz. "The Temperature Mode of the Carbon-Carbon Multi-Disc Brake in the View of the Interrelations of Its Operating Characteristics." Materials 13, no. 8 (2020): 1878. http://dx.doi.org/10.3390/ma13081878.
Full textSolomin, E. V., E. A. Sirotkin, and I. M. Kirpichnikova. "Efficiency Analysis of the Friction Material for the Wind Turbine Braking System." Solid State Phenomena 284 (October 2018): 1321–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.1321.
Full textZhang, Rui-Jun. "Structure design and coordinated control of electromagnetic and frictional braking system based on a hub motor." Science Progress 104, no. 1 (2021): 003685042199848. http://dx.doi.org/10.1177/0036850421998483.
Full textWang, Dagang, Ruixin Wang, Tong Heng, Guozheng Xie, and Dekun Zhang. "Tribo-Brake Characteristics between Brake Disc and Brake Shoe during Emergency Braking of Deep Coal Mine Hoist with the High Speed and Heavy Load." Energies 13, no. 19 (2020): 5094. http://dx.doi.org/10.3390/en13195094.
Full textIvanov, P. Yu, A. M. Khudonogov, E. Yu Dulskiy, A. A. Korsun, and S. V. Treskin. "INVESTIGATION OF TEMPERATURE OF BRAKE PADS WITH DIFFERENT EXTENT OF WEAR IN FRICTIONAL BRAKING." Herald of the Ural State University of Railway Transport, no. 3 (2020): 27–34. http://dx.doi.org/10.20291/2079-0392-2020-3-27-34.
Full textPomoni, Maria, Christina Plati, and Andreas Loizos. "How Can Sustainable Materials in Road Construction Contribute to Vehicles’ Braking?" Vehicles 2, no. 1 (2020): 55–74. http://dx.doi.org/10.3390/vehicles2010004.
Full textAlisin, V. V. "The influence of thermocyclic effects on the tribological properties of a carbon-carbon composite under braking conditions." E3S Web of Conferences 515 (2024): 04005. http://dx.doi.org/10.1051/e3sconf/202451504005.
Full textBochkarev, Igor, Vadim Khramshin, Zhalalidin Galbaev, and Aida Sandybaeva. "Design of electromechanical brake mechanisms with permanent magnets as braking power source." Известия высших учебных заведений. Электромеханика 67, no. 4 (2024): 55–67. http://dx.doi.org/10.17213/0136-3360-2024-3-55-67.
Full textHwang, Jung Ho, Heung Seob Kim, Young Choi, Seong Beom Lee, and Ki Weon Kang. "Finite Element Analysis of the Repeated Braking with 3-D Coupled Model." Key Engineering Materials 306-308 (March 2006): 637–42. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.637.
Full textHong, Hee Rok, and Chang-Wan Ha. "Optimizing Friction Block Location on Brake Pads for High-Speed Railway Vehicles Using Artificial Neural Networks." Applied Sciences 13, no. 17 (2023): 9634. http://dx.doi.org/10.3390/app13179634.
Full textBinshuang, Zheng, Chen Jiaying, Zhao Runmin, and Huang Xiaoming. "Skid resistance demands of asphalt pavement during the braking process of autonomous vehicles." MATEC Web of Conferences 275 (2019): 04002. http://dx.doi.org/10.1051/matecconf/201927504002.
Full textZhang, Yi Bing, and Ying Ying Zhang. "Coupling Analysis of Frictional Heat under Control of Disc Brake Anti-Skid Brake System." Advanced Materials Research 199-200 (February 2011): 721–28. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.721.
Full textGabidullin, A. E., D. V. Gorskiy, I. V. Nazarov, and V. A. Nikitin. "Calculation of the dependence of friction coefficient of locomotive composite ridge brake shoes on pressing force and braking speed." VNIIZHT Scientific Journal 79, no. 6 (2021): 337–42. http://dx.doi.org/10.21780/2223-9731-2020-79-6-337-342.
Full textTopczewska, Katarzyna, and Przemysław Zamojski. "Effect of Pressure Fluctuations on the Temperature During Braking." Acta Mechanica et Automatica 14, no. 2 (2020): 103–7. http://dx.doi.org/10.2478/ama-2020-0015.
Full textRamachandran, G., K. Kathiresan, and M. Venkatesan. "Brake Characteristics and Cooling Methods – A Review." Applied Mechanics and Materials 813-814 (November 2015): 949–53. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.949.
Full textBolló, Betti, Ferenc Sarka, and Katalin Voith. "Egy egyszerűsített fékmodell termikus elemzése." Gép 75, no. 1 (2024): 19–22. http://dx.doi.org/10.70750/gep.2024.1.4.
Full textAkyüz, Recep, Ekrem Altuncu, Ozan Demirdalmiş, and Bilgi Çengelli. "Thermal Analysis of Thermal Spray Coated Gray Cast Iron Brake Rotor." Academic Perspective Procedia 4, no. 1 (2021): 205–11. http://dx.doi.org/10.33793/acperpro.04.01.31.
Full textFu, Chuan Qi, Zhou Wang, Bin Li, and Chi Yu. "The Dynamics Simulation of Braking Process on Automobile Disc Brake." Advanced Materials Research 139-141 (October 2010): 2658–61. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.2658.
Full textStojanovic, Nadica, Jasna Glisovic, Oday Abdullah, Ivan Grujic, and Sasa Vasiljevic. "Pressure influence on heating of ventilating disc brakes for passenger cars." Thermal Science 24, no. 1 Part A (2020): 203–14. http://dx.doi.org/10.2298/tsci190608314s.
Full textPutra, Muhammad Rezki Fitri, Hajar Isworo, Muhamad Noor Yasin, and Rachmat Subagyo. "Friction Modeling of Composite Brake Pads with Ulin Wood Powder (Eusideroxylon zwageri)." Journal of Mechanical Engineering Science and Technology (JMEST) 8, no. 2 (2024): 520. https://doi.org/10.17977/um016v8i22024p520.
Full textBAJKOWSKI, J., J. R. FERNÁNDEZW, K. L. KUTTLER, and M. SHILLOR. "A thermoviscoelastic beam model for brakes." European Journal of Applied Mathematics 15, no. 2 (2004): 181–202. http://dx.doi.org/10.1017/s0956792503005370.
Full textYevtushenko, Aleksander, Katarzyna Topczewska, and Przemysław Zamojski. "Influence of Thermal Sensitivity of Functionally Graded Materials on Temperature during Braking." Materials 15, no. 3 (2022): 963. http://dx.doi.org/10.3390/ma15030963.
Full textZhang, Hongyuan, Jiayu Qiao, and Xin Zhang. "Nonlinear Dynamics Analysis of Disc Brake Frictional Vibration." Applied Sciences 12, no. 23 (2022): 12104. http://dx.doi.org/10.3390/app122312104.
Full textFikrat Yusubov, Fikrat Yusubov. "CORROSION-INDUCED DEGRADATION AND FRICTIONAL INTERACTION IN LOW CARBON STEEL DISC." ETM - Equipment, Technologies, Materials 24, no. 06 (2024): 45–53. https://doi.org/10.36962/etm24062024-45.
Full textZhao, Qiang, Ren He, and Dong Hai Hu. "Fuzzy PID Control of the Integrated System of Electromagnetic Brake and Friction Brake of Car." Advanced Materials Research 988 (July 2014): 568–75. http://dx.doi.org/10.4028/www.scientific.net/amr.988.568.
Full textAbdul Hamid, Mohd Kameil, and Gwidon W. Stachowiak. "The Effects of Grit Particle Size on Frictional Characteristics of Automotive Braking System." Advanced Materials Research 189-193 (February 2011): 3511–16. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.3511.
Full textKlingbeil, W. W., and H. W. H. Witt. "Some Consequences of Coulomb Friction in Modeling Longitudinal Traction." Tire Science and Technology 18, no. 1 (1990): 13–65. http://dx.doi.org/10.2346/1.2141691.
Full textZhao, Shaodi, Yan Yin, Jiusheng Bao, Xingming Xiao, Zengsong Li, and Guoan Chen. "Analysis and correction on frictional temperature rise testing of brake based on preset thermometry method." Industrial Lubrication and Tribology 71, no. 7 (2019): 907–14. http://dx.doi.org/10.1108/ilt-10-2018-0376.
Full textWang, Shuwen, Yang Yu, Shuangxia Liu, and David Barton. "Braking Friction Coefficient Prediction Using PSO–GRU Algorithm Based on Braking Dynamometer Testing." Lubricants 12, no. 6 (2024): 195. http://dx.doi.org/10.3390/lubricants12060195.
Full textYin, Yan, Xingming Xiao, Jiusheng Bao, Jinge Liu, Yuhao Lu, and Yangyang Ji. "A new temperature parameter set for characterizing the frictional temperature rise of disc brakes." Industrial Lubrication and Tribology 68, no. 1 (2016): 35–44. http://dx.doi.org/10.1108/ilt-03-2015-0033.
Full textSarkar, Chiranjit, and Harish Hirani. "Experimental studies on magnetorheological brake containing plane, holed and slotted discs." Industrial Lubrication and Tribology 69, no. 2 (2017): 116–22. http://dx.doi.org/10.1108/ilt-12-2015-0205.
Full textWang, Dagang, Ruixin Wang, Bo Wang, and Magd Abdel Wahab. "Effect of Vibration on Emergency Braking Tribological Behaviors of Brake Shoe of Deep Coal Mine Hoist." Applied Sciences 11, no. 14 (2021): 6441. http://dx.doi.org/10.3390/app11146441.
Full textRajapakshe, M. P., M. Gunaratne, and A. K. Kaw. "Evaluation of LuGre Tire Friction Model with Measured Data on Multiple Pavement Surfaces." Tire Science and Technology 38, no. 3 (2010): 213–27. http://dx.doi.org/10.2346/1.3481671.
Full textYang, Ping, Chuan Qi Fu, and Zhou Wang. "Effect of Aluminum on Mechanical and Frictional Properties of Copper Cladding Iron-Based Braking Material." Advanced Materials Research 904 (March 2014): 103–6. http://dx.doi.org/10.4028/www.scientific.net/amr.904.103.
Full textDemianiuk, Volodymyr. "CONSTRUCTION OF FRICTION FEATURES OF FRICTION MOVEMENTS OF BRAKE MECHANISMS IN THE VIEW OF THIRD-ORDER POLYNOMIAL MODELS." AUTOMOBILE ROADS AND ROAD CONSTRUCTION, no. 111 (June 30, 2022): 252–59. http://dx.doi.org/10.33744/0365-8171-2022-111-252-259.
Full textBazhinov, A.V., M.A. Podrigalo, G.S. Serikov, and I.A. Serikova. "Evaluation of the effectiveness of the joint use of regenerative and dissipative braking of the car." Engineering of nature management, no. 3(21) (August 28, 2021): 7–11. https://doi.org/10.5281/zenodo.7269131.
Full textOmPol, ShardulKubade, VijitSave, SourabhKadole, KishorDhere, and P. M. Patil Mr. "Development of Regenerative Braking System for an Automobile to Utilization of Waste Energy." Journal of Automation and Automobile Engineering 5, no. 1 (2020): 13–16. https://doi.org/10.5281/zenodo.3760592.
Full textHudz, Hustav, and Mykhailo Hlobchak. "The influence of important factors on the distribution of heat flows in elements of drum brakes of vehicles." Transport technologies 2023, no. 1 (2023): 83–89. http://dx.doi.org/10.23939/tt2023.01.083.
Full textKang, Jaewon, Sihyun Ryu, Ho-Jong Gil, and Sang-Kyoon Park. "Effects of Modified Outsole Patterns in Tennis Shoes on Frictional Force and Biomechanical Variables of Lower Extremity Joints." Applied Sciences 13, no. 4 (2023): 2342. http://dx.doi.org/10.3390/app13042342.
Full textYevtushenko, Aleksander, Katarzyna Topczewska, and Michal Kuciej. "Analytical Determination of the Brake Temperature Mode during Repetitive Short-Term Braking." Materials 14, no. 8 (2021): 1912. http://dx.doi.org/10.3390/ma14081912.
Full textBao, Jiusheng, Zengsong Li, Dongyang Hu, Yan Yin, and Tonggang Liu. "Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking." Advances in Materials Science and Engineering 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/867549.
Full textHolinski, R., and D. Hesse. "Changes at interfaces of friction components during braking." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217, no. 9 (2003): 765–70. http://dx.doi.org/10.1177/095440700321700901.
Full textPribilinec, F., and L. Čajkovič. "Improving measuring line parameters of the UIC test bench." IOP Conference Series: Materials Science and Engineering 1199, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1757-899x/1199/1/012032.
Full textRakhimhodjaev, Saidvoris, Salikh Tashpulatov, Gulfiya Sobirova, Marguba Rajapova, and Igor Tyurin. "Dynamics of the warp beam brake drive on a weaving loom for the production of natural silk fabrics." E3S Web of Conferences 515 (2024): 01019. http://dx.doi.org/10.1051/e3sconf/202451501019.
Full textSalem, H. Alzaid, and M.M. Aljassar Jassar. "The Effect of Dust on Friction in the Car's Brake System." International Journal of Mechanical and Industrial Technology 12, no. 2 (2024): 23–26. https://doi.org/10.5281/zenodo.14275726.
Full textKuciej, Michal, Piotr Grzes, and Piotr Wasilewski. "A Comparison of 3D and 2D FE Frictional Heating Models for Long and Variable Applications of Railway Tread Brake." Materials 13, no. 21 (2020): 4846. http://dx.doi.org/10.3390/ma13214846.
Full text