Academic literature on the topic 'FTIR-spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FTIR-spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FTIR-spectroscopy"
Woods, Ron, and Giles Henderson. "FTIR rotational spectroscopy." Journal of Chemical Education 64, no. 11 (November 1987): 921. http://dx.doi.org/10.1021/ed064p921.
Full textMacDonald, H., B. Bedwell, and Erdogan Gulari. "FTIR spectroscopy of microemulsion structure." Langmuir 2, no. 6 (November 1986): 704–8. http://dx.doi.org/10.1021/la00072a005.
Full textRobertson, Evan G., Christopher D. Thompson, Dominique Appadoo, and Don McNaughton. "Tetrafluoroethylene: high resolution FTIR spectroscopy." Phys. Chem. Chem. Phys. 4, no. 20 (2002): 4849–54. http://dx.doi.org/10.1039/b207405b.
Full textTsyganenko, A., T. Aminev, D. Baranov, and O. Pestsov. "FTIR spectroscopy of adsorbed ozone." Chemical Physics Letters 761 (December 2020): 138071. http://dx.doi.org/10.1016/j.cplett.2020.138071.
Full textMarcovich, N. E., M. M. Reboredo, and M. I. Aranguren. "FTIR spectroscopy applied to woodflour." Composite Interfaces 4, no. 3 (January 1996): 119–32. http://dx.doi.org/10.1163/156855496x00209.
Full textBerthomieu, Catherine, and Rainer Hienerwadel. "Fourier transform infrared (FTIR) spectroscopy." Photosynthesis Research 101, no. 2-3 (June 10, 2009): 157–70. http://dx.doi.org/10.1007/s11120-009-9439-x.
Full textLiu, D., P. Wu, and P. Jiao. "Researching rumen degradation behaviour of protein by FTIR spectroscopy." Czech Journal of Animal Science 60, No. 1 (July 15, 2016): 25–32. http://dx.doi.org/10.17221/7908-cjas.
Full textKaramancheva, I., V. Stefov, B. Šoptrajanov, G. Danev, E. Spasova, and J. Assa. "FTIR spectroscopy and FTIR microscopy of vacuum-evaporated polyimide thin films." Vibrational Spectroscopy 19, no. 2 (April 1999): 369–74. http://dx.doi.org/10.1016/s0924-2031(99)00011-9.
Full textKrogh Christensen, L., and F. M. Nicolaisen. "FTIR-spectroscopy of atmospheric greenhouse gases." Journal of Aerosol Science 28, no. 6 (September 1997): 1110. http://dx.doi.org/10.1016/s0021-8502(97)88119-0.
Full textJohnson, M. S., and B. Nelander. "High-resolution FTIR spectroscopy of OBrO." Journal of Aerosol Science 28, no. 6 (September 1997): 1113. http://dx.doi.org/10.1016/s0021-8502(97)88130-x.
Full textDissertations / Theses on the topic "FTIR-spectroscopy"
Nybacka, Louise. "FTIR spectroscopy of glucose." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306952.
Full textFinch, D. C. "FTIR spectroscopy of electron irradiated polymers." Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381899.
Full textBaisitse, Tshepiso Revonia. "Characterisation of InAs-based epilayers by FTIR spectroscopy." Thesis, Nelson Mandela Metropolitan University, 2007. http://hdl.handle.net/10948/474.
Full textBecker, Edo. "FTIR-Emissionsspektroskopische Untersuchungen der arktischen Atmosphäre = Investigations of the arctic atmosphere by FTIR-Emission spectroscopy /." Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung, 1998. http://www.gbv.de/dms/bs/toc/247022616.pdf.
Full textMemon, Khalida Perveen. "Solid fat index determination by Fourier transform (FTIR) spectroscopy." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=24028.
Full textGarip, Sebnem. "The Characterization Of Bacteria With Fourier Transform Infrared(ftir) Spectroscopy." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606673/index.pdf.
Full textCrowley, J. N. "A study of reaction mechanism by matrix isolation / FTIR spectroscopy." Thesis, University of East Anglia, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378892.
Full textLUZ, ELAINE ROCHA DA. "PREDICTION OF PROPERTIES OF GASOLINE USING FTIR SPECTROSCOPY AND PLS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=4432@1.
Full textDiversas propriedades físico-químicas de gasolinas (teores de álcool, benzeno, aromáticos, saturados e olefinas, densidade, MON, RON e temperaturas de destilação) foram estimadas simultaneamente por espectroscopia na região do infravermelho médio (FTIR) acoplada à regressão por mínimos quadrados parciais (PLS). Os métodos de referência utilizados incluíram métodos ASTM, ABNT e o equipamento IROX, baseado em espectroscopia na região do infravermelho próximo. Embora o erro médio da predição (RMSEP) tenha sido o principal parâmetro considerado para selecionar o melhor modelo de predição para cada propriedade, a repetibilidade e a reprodutibilidade também foram avaliados. As propriedades que tiveram como método de referência o equipamento IROX (todos os teores, MON e RON) apresentaram, em geral, resultados mais pobres, sendo o pior resultado o encontrado para o teor de olefinas (21,3 +- 2,4) e o melhor para MON (82,5 +- 0,5). No caso das propriedades que tiveram como referência métodos ASTM ou ABNT (teor de álcool, densidade e temperaturas de destilação) o pior resultado encontrado foi para o teor de álcool (23,9 +- 0,7) e o melhor para a densidade (0,7556 +- 0,0025). No entanto, mesmo quando os valores de RMSEP encontrados através da regressão PLS foram considerados pequenos, os coeficientes de correlação (R2) entre os valores preditos e os de referência, para um conjunto de amostras independentes da calibração, foram menores que 0,70, para todas as propriedades. Isso se deve, principalmente, a pouca variação nos valores de algumas propriedades, como MON, por exemplo, que em todas as gasolinas analisadas apresentou valores entre 81,4 e 83,8. Ainda assim, o método FTIR-PLS mostrou-se bastante promissor como uma alternativa para a análise de gasolinas, podendo ser melhorado com a utilização de maior número de amostras de calibração e/ou com a utilização de um conjunto de amostras mais representativo, além da utilização de métodos de referência padrão.
Several gasoline properties (alcohol, benzene, aromatics, saturated and olefin contents, density, MON, RON and distillation temperatures) have been predicted simultaneously by spectroscopy in the region of the mid infrared (FTIR) and partial least squares regression (PLS). The methods used as reference have included ASTM and ABNT methods and the IROX equipment, based on spectroscopy in the region of the near infrared. Although the standard error of the prediction (RMSEP) has been the main considered parameter to select the best model of prediction for each property, the repeatability and the reproducibility have also been evaluated. In general, the properties determined by IROX as the reference method (all the constituents, MON and RON) have presented poor results, the worst one found being the olefins content (21,3 +- 2,4) and the best one MON (82,5 +- 0,5). In the case of the properties that had ASTM or ABNT methods as reference (alcohol content, density and distillation temperatures) the worst results were found for the alcohol content (23,9 +- 0,7) and the best one for the density (0,7556 +- 0,0025). However, even values of RMSEP found by PLS regression had been considered small, the correlation coefficients (R2) between the predicted values and reference values, for a set of samples independent of the calibration, have been shown to be below 0,70, for all the properties. This fact can be explained by the small variation in the values of some properties, as MON, that in all gasoline samples presented values between 81,4 and 83,8. FTIR-PLS method revealed promising as an alternative for gasoline analysis. This method could be improved with the use of a greater set of calibration samples and/or with the use of a more representative sample set, beyond the use of standard reference methods.
Muthudoss, Prakash. "Application of FTIR imaging and spectroscopy to solid dosage formulations." Thesis, Sheffield Hallam University, 2011. http://shura.shu.ac.uk/20107/.
Full textYushchenko, Tetyana [Verfasser]. "PolyQ aggregation studied by ATR-FTIR difference spectroscopy / Tetyana Yushchenko." Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1141576317/34.
Full textBooks on the topic "FTIR-spectroscopy"
Finch, Dudley Sean. FTIR spectroscopy of electron irradiated polymers. Uxbridge: Brunel University, 1988.
Find full textBecker, Edo. FTIR-Emissionsspektroskopische Untersuchungen der arktischen Atmosphäre =: Investigations of the arctic atmosphere by FTIR-emission spectroscopy. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1998.
Find full textCrowley, John N. A study of reaction mechanism by matrix isolation/FTIR spectroscopy. Norwich: University of East Anglia, 1987.
Find full textAcciani, T. R. Speciation of hazardous inorganic compounds by Fourier transform infrared (FTIR) spectroscopy. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1985.
Find full textAcciani, T. R. Speciation of hazardous inorganic compounds by Fourier transform infrared (FTIR) spectroscopy. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1985.
Find full textLitvin, Feliks, Lyudmila Satina, Ravil' Hatypov, Galina Mikulinskaya, Nikita Pen'kov, and Konstantin Neverov. Molecular spectroscopy. Fundamentals of theory and practice. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1870280.
Full textTuchman, D. P. Research toward direct analysis of quartz dust on filters using FTIR spectroscopy. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textD'Amario, Christopher. Differentiation of synthetic cathinones via attenuated total reflectance-fournier transform infrared spectroscopy (ATR-FTIR). [San Diego, California]: National University, 2018.
Find full textMeier, Arndt. Determination of atmospheric trace gas amounts and corresponding natural isotopic ratios by means of ground-based FTIR spectroscopy in the high Arctic. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1997.
Find full textSigsby, John E. Evaluation of a FTIR mobile source measurement system. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, 1989.
Find full textBook chapters on the topic "FTIR-spectroscopy"
Schmitt, J., and H. C. Flemming. "FTIR Spectroscopy." In Microbially Influenced Corrosion of Materials, 143–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80017-7_11.
Full textLindenberg, Christian, Jeroen Cornel, Jochen Schöll, and Marco Mazzotti. "ATR-FTIR Spectroscopy." In Industrial Crystallization Process Monitoring and Control, 81–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645206.ch9.
Full textGutiérrez-Sanz, Oscar, Olaf Rüdiger, and Antonio L. De Lacey. "FTIR Spectroscopy of Metalloproteins." In Methods in Molecular Biology, 95–106. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-794-5_7.
Full textBerna, Francesco. "Fourier Transform Infrared Spectroscopy (FTIR)." In Encyclopedia of Geoarchaeology, 285–86. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-1-4020-4409-0_15.
Full textKumari, Kalpana, and Vibin Ramakrishnan. "Fourier Transform Infrared (FTIR) Spectroscopy." In Springer Protocols Handbooks, 51–54. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3405-9_7.
Full textYamada, Daichi, and Hideki Kandori. "FTIR Spectroscopy of Flavin-Binding Photoreceptors." In Methods in Molecular Biology, 361–76. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0452-5_14.
Full textJiang, Hou-Li, Bo Jiang, Zhan-Jun Song, Zhen-Hua Deng, Song-Cheng Yang, and De-Xu Zhu. "Protein unfolding studied by FTIR spectroscopy." In Peptides, 100–104. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-010-9069-8_25.
Full textdas Graças da Silva-Valenzuela, Maria, Wang Shu Hui, and Francisco Rolando Valenzuela-Díaz. "FTIR Spectroscopy of Some Brazilian Clays." In Characterization of Minerals, Metals, and Materials 2016, 227–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48210-1_27.
Full textSariciftci, N. S., H. Neugebauer, H. Kuzmany, and A. Neckel. "In situ FTIR Spectroscopy of Polyaniline." In Springer Series in Solid-State Sciences, 228–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83284-0_39.
Full textJoshi, Devi Datt. "FTIR Spectroscopy: Herbal Drugs and Fingerprints." In Herbal Drugs and Fingerprints, 121–46. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0804-4_7.
Full textConference papers on the topic "FTIR-spectroscopy"
Anjos, Vinicius Pereira dos, Caroline Guimarães Pançardes da Silva Marangoni, Rafael Eleodoro de Goes, Arandi Ginane Bezerra, and Denise Maria Zezell. "ATR-FTIR Spectroscopy in the Detection of Amoxicillin." In 2024 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 1–3. IEEE, 2024. https://doi.org/10.1109/sbfotoniopc62248.2024.10813519.
Full textIshida, Hideyuki. "Industrial applications of FTIR spectroscopy." In Fourier Transform Spectroscopy: Ninth International Conference, edited by John E. Bertie and Hal Wieser. SPIE, 1994. http://dx.doi.org/10.1117/12.166789.
Full textKovacs, Laszlo, E. Beregi, K. Polgar, and A. Peter. "FTIR spectroscopy of borate crystals." In International Conference on Solid State Crystals '98, edited by Andrzej Majchrowski and Jerzy Zielinski. SPIE, 1999. http://dx.doi.org/10.1117/12.343000.
Full textKosters, P. G. H. "2D-FTIR Spectroscopy of bacterioRhodopsin." In International symposium on two-dimensional correlation spectroscopy. AIP, 2000. http://dx.doi.org/10.1063/1.1302881.
Full textHermann, Peter, Bernd Kästner, Arne Hoehl, Piotr Patoka, Georg Ulrich, Eckart Rühl, and Gerhard Ulm. "Enhanced Sensitivity of Nano-FTIR Spectroscopy." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fts.2016.ftu2e.2.
Full textMcClelland, John F., Roger W. Jones, Jae S. Oh, and Linda M. Seaverson. "Recent Advances In FTIR Photoacoustic Spectroscopy." In Intl Conf on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron. SPIE, 1989. http://dx.doi.org/10.1117/12.969512.
Full textHeussler, Sascha P., Herbert O. Moser, S. M. P. Kalaiselvi, Chenggen Quan, Cho Jui Tay, Shuvan P. Turaga, and Mark Breese. "Pulsed and high-speed FTIR spectroscopy." In SPIE Defense, Security, and Sensing, edited by Mark A. Druy and Richard A. Crocombe. SPIE, 2012. http://dx.doi.org/10.1117/12.919533.
Full textAndrews, Lester. "Matrix FTIR Spectroscopy Of Transient Species." In Intl Conf on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron. SPIE, 1989. http://dx.doi.org/10.1117/12.969371.
Full textMoss, David A., Kathrin Fuechsle, Ralf Masuch, and Andreas Wolf. "Biomedical applications of FTIR difference spectroscopy." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Anita Mahadevan-Jansen and Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384962.
Full textMink, J., Gabor Keresztury, T. Szilagyi, and P. Tetenyi. "FTIR emission spectroscopy of nontransparent samples." In Luebeck - DL tentative, edited by Herbert M. Heise, Ernst H. Korte, and Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56447.
Full textReports on the topic "FTIR-spectroscopy"
Herman, Matthew Joseph. FTIR analysis of X-ray irradiated Parylene-C using 2D correlation spectroscopy. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213515.
Full textWang, H., R. A. Palmer, D. K. Graff, and J. R. Schoonover. Dynamic opto-rheological study of estane copolymers using step-scan FTIR spectroscopy. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/661440.
Full textIrudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman, and Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, October 2004. http://dx.doi.org/10.32747/2004.7587221.bard.
Full textClausen, Jay, Richard Hark, Russ Harmon, John Plumer, Samuel Beal, and Meghan Bishop. A comparison of handheld field chemical sensors for soil characterization with a focus on LIBS. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43282.
Full textDemirgian, J. C., C. L. Hammer, and R. T. Kroutil. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10154478.
Full textColeman, M. D., M. Ellison, and A. Toy. Differences between CEN/TS 17337:2019 and TGN M22: Stationary source emissions monitoring using portable Fourier Transform Infrared (FTIR) spectroscopy. National Physical Laboratory, July 2021. http://dx.doi.org/10.47120/npl.9216.
Full textGurtowski, Luke, Joshua LeMonte, Jay Bennett, Brandon Lafferty, and Matthew Middleton. Qualification of Hanna Instruments HI9829 for the Environmental Toolkit for Expeditionary Operations. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45520.
Full text