Academic literature on the topic 'Fuchsian differential equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuchsian differential equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuchsian differential equations"

1

Aleksandrov, A. G. "Generalized Fuchsian Systems of Differential Equations." Journal of Mathematical Sciences 132, no. 6 (2006): 689–99. http://dx.doi.org/10.1007/s10958-006-0017-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouw, Irene I., and Martin Möller. "Differential equations associated with nonarithmetic Fuchsian groups." Journal of the London Mathematical Society 81, no. 1 (2009): 65–90. http://dx.doi.org/10.1112/jlms/jdp059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bazhanov, V. V., and S. L. Lukyanov. "From Fuchsian differential equations to integrable QFT." Journal of Physics A: Mathematical and Theoretical 47, no. 46 (2014): 462002. http://dx.doi.org/10.1088/1751-8113/47/46/462002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seeger, A., W. Lay, and S. Yu Slavyanov. "Confluence of fuchsian second-order differential equations." Theoretical and Mathematical Physics 104, no. 2 (1995): 950–60. http://dx.doi.org/10.1007/bf02065975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Namba, Makoto. "A class of differential equations of Fuchsian type." Tohoku Mathematical Journal 39, no. 3 (1987): 391–406. http://dx.doi.org/10.2748/tmj/1178228286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singer, Michael F., and Marvin D. Tretkoff. "A Classification of Differential Equations of Fuchsian Class." American Journal of Mathematics 107, no. 5 (1985): 1093. http://dx.doi.org/10.2307/2374347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YOSHINO, Masafumi. "Divergent formal solutions to Fuchsian partial differential equations." Journal of the Mathematical Society of Japan 40, no. 1 (1988): 139–50. http://dx.doi.org/10.2969/jmsj/04010139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yilmazer, Resat, Mustafa Inc, and Mustafa Bayram. "On Discrete Fractional Solutions of Non-Fuchsian Differential Equations." Mathematics 6, no. 12 (2018): 308. http://dx.doi.org/10.3390/math6120308.

Full text
Abstract:
In this article, we obtain new fractional solutions of the general class of non-Fuchsian differential equations by using discrete fractional nabla operator ∇ η ( 0 < η < 1 ) . This operator is applied to homogeneous and nonhomogeneous linear ordinary differential equations. Thus, we obtain new solutions in fractional forms by a newly developed method.
APA, Harvard, Vancouver, ISO, and other styles
9

MANDAI, Takeshi. "The method of Frobenius to Fuchsian partial differential equations." Journal of the Mathematical Society of Japan 52, no. 3 (2000): 645–72. http://dx.doi.org/10.2969/jmsj/05230645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mirumbe, G. I., and J. M. Mango. "ON GENERALIZED SOLUTIONS OF LOCALLY FUCHSIAN ORDINARY DIFFERENTIAL EQUATIONS." Journal of Mathematical Sciences: Advances and Applications 51, no. 1 (2018): 99–117. http://dx.doi.org/10.18642/jmsaa_7100121959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fuchsian differential equations"

1

Ponsignon, Jean-Charles. "Réduction fuchsienne et modèles stellaires." Thesis, Reims, 2013. http://www.theses.fr/2013REIMS046/document.

Full text
Abstract:
L'objet de cette thèse est l'étude d'un système différentielle non linéaire issu d'un modèle stellaire. Après réduction et changements d'inconnues et variables, on se ramène à un second membre analytique en chacune des variables du problème ainsi qu'en des fonctions bien choisies. Nous montrons ensuite que les solutions peuvent s'écrire dans un espace de séries absolument convergentes. Ce théorème d'existence servira alors de brique élémentaire à une méthode de réduction de type Fuchsienne. L'objectif étant d'obtenir un développement sous forme de série faisant apparaître de manière explicite les différentes constantes arbitraires inhérentes à ce type d'équations
The object of this thesis is the study of a non linear differential equation stemming from a stellar model. After reduction and unknowns changes and variables, we achieve to an analytic second member in each of the problem variables and well chosen functions. Then we show that the solutions can be described in a space of absolute convergent series. This theorem of existence will be used as an elementary brick to a nearby method of Fuchsian reduction. The objective was to obtain a development which elicits arbitrary various constants inherent to this type of equations
APA, Harvard, Vancouver, ISO, and other styles
2

Jain, Rahul. "Regularity And Propagation Phenomena In Some Linear And Non-Linear Partial Differential Equations With Particular Reference To Microlocal Analysis." Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1447.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fuchsian differential equations"

1

Yoshida, Masaaki. Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yoshida, Masaaki. Fuchsian differential equations, with special emphasis on the Gauss-Schwarz theory. Vieweg, 1987.

APA, Harvard, Vancouver, ISO, and other styles
3

Szmydt, Zofia. The Mellin transformation and Fuchsian type partial differential equations. Kluwer Academic Publishers, 1992.

APA, Harvard, Vancouver, ISO, and other styles
4

Szmydt, Zofia, and Bogdan Ziemian. The Mellin Transformation and Fuchsian Type Partial Differential Equations. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2424-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yoshida, M. Fuchsian Differential Equations. Friedrick Vieweg & Son, 1987.

APA, Harvard, Vancouver, ISO, and other styles
6

Fractional Calculus of Weyl Algebra and Fuchsian Differential Equations. The Mathematical Society of Japan, 2012. http://dx.doi.org/10.2969/msjmemoirs/028010000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fuchsian Reduction: Applications to Geometry, Cosmology and Mathematical Physics (Progress in Nonlinear Differential Equations and Their Applications). Birkhäuser Boston, 2007.

APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fuchsian differential equations"

1

Haraoka, Yoshishige. "Fuchsian Differential Equations." In Lecture Notes in Mathematics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54663-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yoshida, Masaaki. "Hypergeometric Differential Equations." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, Masaaki. "The Gauss-Schwarz Theory in Two Variables." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yoshida, Masaaki. "Reflection Groups." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yoshida, Masaaki. "Toward Finding New Differential Equations." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yoshida, Masaaki. "General Theory of Differential Equations I." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoshida, Masaaki. "The Riemann and Riemann-Hilbert Problems." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshida, Masaaki. "Schwarzian Derivatives I." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yoshida, Masaaki. "The Gauss-Schwarz Theory for Hypergeometric Differential Equations." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoshida, Masaaki. "The General Theory of Differential Equations." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fuchsian differential equations"

1

CHOQUET-BRUHAT, YVONNE. "FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS." In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DAI, DAO-QING, and MING-SHENG LIU. "SOME PROBLEMS FOR COMPLEX DIFFERENTIAL EQUATIONS OF FUCHSIAN TYPE." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gituliar, Oleksandr, and Vitaly Magerya. "Fuchsia and master integrals for splitting functions from differential equations in QCD." In Loops and Legs in Quantum Field Theory. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.260.0030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ando, Kana. "An example of the reduction of a single ordinary differential equation to a system, and the restricted Fuchsian relation." In Proceedings of the 4th Japanese–Australian Workshop (JARCS4). WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814596046_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography