Academic literature on the topic 'Fuchsian groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuchsian groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuchsian groups"

1

Beardon, A. F., and Svetlana Katok. "Fuchsian Groups." Mathematical Gazette 77, no. 479 (1993): 288. http://dx.doi.org/10.2307/3619761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabai, David. "Convergence groups are Fuchsian groups." Bulletin of the American Mathematical Society 25, no. 2 (1991): 395–403. http://dx.doi.org/10.1090/s0273-0979-1991-16082-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gabai, David. "Convergence Groups are Fuchsian Groups." Annals of Mathematics 136, no. 3 (1992): 447. http://dx.doi.org/10.2307/2946597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Joonhyung. "Quaternionic hyperbolic Fuchsian groups." Linear Algebra and its Applications 438, no. 9 (2013): 3610–17. http://dx.doi.org/10.1016/j.laa.2013.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LALLEY, S. "Percolation on fuchsian groups." Annales de l'Institut Henri Poincare (B) Probability and Statistics 34, no. 2 (1998): 151–77. http://dx.doi.org/10.1016/s0246-0203(98)80022-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hidalgo, Rubén A. "Noded fuchsian groups i." Complex Variables, Theory and Application: An International Journal 36, no. 1 (1998): 45–66. http://dx.doi.org/10.1080/17476939808815099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BUFETOV, ALEXANDER I., and CAROLINE SERIES. "A pointwise ergodic theorem for Fuchsian groups." Mathematical Proceedings of the Cambridge Philosophical Society 151, no. 1 (2011): 145–59. http://dx.doi.org/10.1017/s0305004111000247.

Full text
Abstract:
AbstractWe use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.
APA, Harvard, Vancouver, ISO, and other styles
8

Johansson, Stefan. "Genera of arithmetic Fuchsian groups." Acta Arithmetica 86, no. 2 (1998): 171–91. http://dx.doi.org/10.4064/aa-86-2-171-191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lustig, Martin, and Yoav Moriah. "Nielsen equivalence in Fuchsian groups." Algebraic & Geometric Topology 22, no. 1 (2022): 189–226. http://dx.doi.org/10.2140/agt.2022.22.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KULKARNI, RAVI S. "NORMAL SUBGROUPS OF FUCHSIAN GROUPS." Quarterly Journal of Mathematics 36, no. 3 (1985): 325–44. http://dx.doi.org/10.1093/qmath/36.3.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fuchsian groups"

1

Anaya, Bob. "Fuchsian Groups." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/838.

Full text
Abstract:
Fuchsian groups are discrete subgroups of isometries of the hyperbolic plane. This thesis will primarily work with the upper half-plane model, though we will provide an example in the disk model. We will define Fuchsian groups and examine their properties geometrically and algebraically. We will also discuss the relationships between fundamental regions, Dirichlet regions and Ford regions. The goal is to see how a Ford region can be constructed with isometric circles.
APA, Harvard, Vancouver, ISO, and other styles
2

Avelin, Helen. "Computations of Automorphic Functions on Fuchsian Groups." Doctoral thesis, Uppsala : Department of Mathematics, Uppsala university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reid, A. W. "Arithmetic Kleinian groups and their Fuchsian subgroups." Thesis, University of Aberdeen, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382916.

Full text
Abstract:
The aim of the thesis is to study in depth a certain class of hyperbolic 3-manifolds; namely those which are the quotient of hyperbolic 3-space by an arithmetic Kleinian group. In particular we consider the distribution and characterization of arithmetic Kleinian groups in the class of all Kleinian groups of finite covolume, the Fuchsian subgroup structure and the relationship between the Fuchsian subgroups (when they exist) and the arithmetic Kleinian group. In chapter 2 a characterization of arithmetic Kleinian groups via the traces of the elements in the group is given and, appealing direct
APA, Harvard, Vancouver, ISO, and other styles
4

McNeilly, David Andrew. "The trace spectrum of Fuchsian groups of signature (0;4;0)." Thesis, University of Cambridge, 1996. https://www.repository.cam.ac.uk/handle/1810/252179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Larsson, David. "Algorithmic Construction of Fundamental Polygons for Certain Fuchsian Groups." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119916.

Full text
Abstract:
The work of mathematical giants, such as Lobachevsky, Gauss, Riemann, Klein and Poincaré, to name a few, lies at the foundation of the study of the highly structured Riemann surfaces, which allow definition of holomorphic maps, corresponding to analytic maps in the theory of complex analysis. A topological result of Poincaré states that every path-connected Riemann surface can be realised by a construction of identifying congruent points in the complex plane, the Riemann sphere or the hyperbolic plane; just three simply connected surfaces that cover the underlying Riemann surface. This require
APA, Harvard, Vancouver, ISO, and other styles
6

Kucharczyk, Robert [Verfasser]. "On arithmetic properties of Fuchsian groups and Riemann surfaces / Robert Kucharczyk." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077289340/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Solomyak, Margarita. "Essential spanning forests and electric networks in groups /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hair, Steven. "New Methods for Finding Non-Left-Orderable and Unique Product Groups." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9633.

Full text
Abstract:
In this paper, we present techniques for proving a group to be non-left-orderable or a unique product group. These methods involve the existence of a mapping from the group to R which obeys a left-multiplication criterion. By determining the existence or non-existence of such a mapping, the desired information about the group can be concluded. As examples, we apply this technique to groups of transformations in hyperbolic 2- and 3- space, and Fibonacci groups.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Ohtake, Hiromi. "ON THE DEFORMATION OF FUCHSIAN GROUPS BY QUASICONFORMAL MAPPINGS WITH PARTIALLY VANISHING BELTRAMI COEFFICIENTS." 京都大学 (Kyoto University), 1988. http://hdl.handle.net/2433/86389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Iordanov, Iordan. "Delaunay triangulations of a family of symmetric hyperbolic surfaces in practice." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0010/document.

Full text
Abstract:
La surface de Bolza est la surface hyperbolique orientable compacte la plus symétrique de genre 2. Pour tout genre supérieur à 2, il existe une surface orientable compacte construite de manière similaire à la surface de Bolza et ayant le même type de symétries. Nous appelons ces surfaces des surfaces hyperboliques symétriques. Cette thèse porte sur le calcul des triangulations de Delaunay (TD) de surfaces hyperboliques symétriques. Les TD de surfaces compactes peuvent être considérées comme des TD périodiques de leur revêtement universel (dans notre cas, le plan hyperbolique). Une TD est pour
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fuchsian groups"

1

Katok, Svetlana. Fuchsian groups. University of Chicago Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zaganescu, M. Bosonic knotted strings, Liouville equation, fuchsian groups. Uniw din Timisoara, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Emilio, Bujalance García, Costa A. F. 1960-, and Martínez E. 1952-, eds. Topics on Riemann surfaces and Fuchsian groups. Cambridge University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gilman, Jane. Two-generator discrete subgroups of PSL (2, R). American Mathematical Society, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bolibrukh, A. A. 21-i͡a︡ problema Gilberta dli͡a︡ lineĭnykh fuksovykh sistem. "Nauka", 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bujalance, E., A. F. Costa, and E. Martínez, eds. Topics on Riemann Surfaces and Fuchsian Groups. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511569272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bujalance, E., E. Martínez, and A. F. Costa. Topics on Riemann Surfaces and Fuchsian Groups. Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bujalance, E., E. Martínez, and A. F. Costa. Topics on Riemann Surfaces and Fuchsian Groups. Cambridge University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bujalance, E., E. Martínez, and A. F. Costa. Topics on Riemann Surfaces and Fuchsian Groups. Cambridge University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aberdeen, University of, ed. Arithmetic Kleinian groups and their Fuchsian subgroups. 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Fuchsian groups"

1

Godement, Roger. "Fuchsian Groups." In Universitext. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16907-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iwaniec, Henryk. "Fuchsian groups." In Spectral Methods of Automorphic Forms. American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/053/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, Masaaki. "Reflection Groups." In Fuchsian Differential Equations. Vieweg+Teubner Verlag, 1987. http://dx.doi.org/10.1007/978-3-663-14115-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Sang-hyun, Thomas Koberda, and Mahan Mj. "Splittable Fuchsian Groups." In Flexibility of Group Actions on the Circle. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02855-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poincaré, Henri. "Theory of Fuchsian Groups." In Papers on Fuchsian Functions. Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5148-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dal’Bo, Françoise. "Dynamics of Fuchsian groups." In Geodesic and Horocyclic Trajectories. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-073-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dal’Bo, Françoise. "Examples of Fuchsian groups." In Geodesic and Horocyclic Trajectories. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-073-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Poincaré, Henri. "Memoir on Kleinian Groups." In Papers on Fuchsian Functions. Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5148-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Poincaré, Henri. "On the Groups of Linear Equations." In Papers on Fuchsian Functions. Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5148-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Larsen, Michael, and Alexander Lubotzky. "Representation Varieties of Fuchsian Groups." In From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4075-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fuchsian groups"

1

Button, Jack. "All Fuchsian Schottky groups are classical Schottky groups." In Conference in honour of David Epstein's 60th birthday. Mathematical Sciences Publishers, 1998. http://dx.doi.org/10.2140/gtm.1998.1.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zenine, N., S. Boukraa, S. Hassani, and J. M. Maillard. "Differential Galois Groups of High Order Fuchsian ODE's." In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lopes Vieira, Vandenberg, Reginaldo Palazzo, and Mercio Botelho Faria. "On the arithmetic Fuchsian groups derived from quaternion orders." In 2006 International Telecommunications Symposium. IEEE, 2006. http://dx.doi.org/10.1109/its.2006.4433342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosenberger, Gerhard, and Hildegard Terhorst. "A short survey on vertical Heegaard decompositions of Seifert fibered spaces and Nielsen equivalence in Fuchsian groups." In Proceedings of the AMS Special Session. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503723_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!