To see the other types of publications on this topic, follow the link: Fuchsian groups.

Journal articles on the topic 'Fuchsian groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fuchsian groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Beardon, A. F., and Svetlana Katok. "Fuchsian Groups." Mathematical Gazette 77, no. 479 (1993): 288. http://dx.doi.org/10.2307/3619761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabai, David. "Convergence groups are Fuchsian groups." Bulletin of the American Mathematical Society 25, no. 2 (1991): 395–403. http://dx.doi.org/10.1090/s0273-0979-1991-16082-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gabai, David. "Convergence Groups are Fuchsian Groups." Annals of Mathematics 136, no. 3 (1992): 447. http://dx.doi.org/10.2307/2946597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Joonhyung. "Quaternionic hyperbolic Fuchsian groups." Linear Algebra and its Applications 438, no. 9 (2013): 3610–17. http://dx.doi.org/10.1016/j.laa.2013.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LALLEY, S. "Percolation on fuchsian groups." Annales de l'Institut Henri Poincare (B) Probability and Statistics 34, no. 2 (1998): 151–77. http://dx.doi.org/10.1016/s0246-0203(98)80022-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hidalgo, Rubén A. "Noded fuchsian groups i." Complex Variables, Theory and Application: An International Journal 36, no. 1 (1998): 45–66. http://dx.doi.org/10.1080/17476939808815099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BUFETOV, ALEXANDER I., and CAROLINE SERIES. "A pointwise ergodic theorem for Fuchsian groups." Mathematical Proceedings of the Cambridge Philosophical Society 151, no. 1 (2011): 145–59. http://dx.doi.org/10.1017/s0305004111000247.

Full text
Abstract:
AbstractWe use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.
APA, Harvard, Vancouver, ISO, and other styles
8

Johansson, Stefan. "Genera of arithmetic Fuchsian groups." Acta Arithmetica 86, no. 2 (1998): 171–91. http://dx.doi.org/10.4064/aa-86-2-171-191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lustig, Martin, and Yoav Moriah. "Nielsen equivalence in Fuchsian groups." Algebraic & Geometric Topology 22, no. 1 (2022): 189–226. http://dx.doi.org/10.2140/agt.2022.22.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KULKARNI, RAVI S. "NORMAL SUBGROUPS OF FUCHSIAN GROUPS." Quarterly Journal of Mathematics 36, no. 3 (1985): 325–44. http://dx.doi.org/10.1093/qmath/36.3.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

James, D. G., and C. Maclachlan. "Fuchsian Subgroups of Bianchi Groups." Transactions of the American Mathematical Society 348, no. 5 (1996): 1989–2002. http://dx.doi.org/10.1090/s0002-9947-96-01606-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

MACLACHLAN, C. "TORSION IN ARITHMETIC FUCHSIAN GROUPS." Journal of the London Mathematical Society 73, no. 01 (2006): 14–30. http://dx.doi.org/10.1112/s0024610705022428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bishop, Christopher J., and Peter W. Jones. "Compact deformations of Fuchsian groups." Journal d'Analyse Mathématique 87, no. 1 (2002): 5–36. http://dx.doi.org/10.1007/bf02868468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dunwoody, M. J., and M. Sageev. "Splittings of certain Fuchsian groups." Proceedings of the American Mathematical Society 125, no. 7 (1997): 1953–54. http://dx.doi.org/10.1090/s0002-9939-97-03916-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Meson, Alejandro, and Fernando Vericat. "Dimension Theory and Fuchsian Groups." Acta Applicandae Mathematicae 80, no. 1 (2004): 95–121. http://dx.doi.org/10.1023/b:acap.0000013256.82510.aa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Newman, Morris. "A note on Fuchsian groups." Illinois Journal of Mathematics 29, no. 4 (1985): 682–86. http://dx.doi.org/10.1215/ijm/1256045503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zomorrodian, Reza. "Residual solubility of Fuchsian groups." Illinois Journal of Mathematics 51, no. 3 (2007): 697–703. http://dx.doi.org/10.1215/ijm/1258131097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shirokov, N. A. "A note on Fuchsian groups." Journal of Soviet Mathematics 42, no. 2 (1988): 1668–71. http://dx.doi.org/10.1007/bf01665058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Katok, Svetlana. "Reduction theory for Fuchsian groups." Mathematische Annalen 273, no. 3 (1986): 461–70. http://dx.doi.org/10.1007/bf01450733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Everitt, Brent. "Alternating Quotients of Fuchsian Groups." Journal of Algebra 223, no. 2 (2000): 457–76. http://dx.doi.org/10.1006/jabr.1999.8014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hong, Sungbok, and Darryl McCullough. "Concentration points for Fuchsian groups." Topology and its Applications 105, no. 3 (2000): 285–303. http://dx.doi.org/10.1016/s0166-8641(99)90064-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lu, Zhipeng. "Geodesic cover of Fuchsian groups." Annales mathématiques Blaise Pascal 30, no. 2 (2024): 189–99. http://dx.doi.org/10.5802/ambp.421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Canary, Richard. "Hitchin representations of Fuchsian groups." EMS Surveys in Mathematical Sciences 9, no. 2 (2023): 355–88. http://dx.doi.org/10.4171/emss/61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Johansson, Stefan. "Traces in Arithmetic Fuchsian Groups." Journal of Number Theory 66, no. 2 (1997): 251–70. http://dx.doi.org/10.1006/jnth.1997.2168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jones, Peter W., and Lesley A. Ward. "Fuchsian Groups, Quasiconformal Groups, and Conical Limit Sets." Transactions of the American Mathematical Society 352, no. 1 (1999): 311–62. http://dx.doi.org/10.1090/s0002-9947-99-02118-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Varopoulos, N. Th. "Random walks on groups. Applications to Fuchsian groups." Arkiv för Matematik 23, no. 1-2 (1985): 171–76. http://dx.doi.org/10.1007/bf02384423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liebeck, Martin W., and Aner Shalev. "Fuchsian groups, finite simple groups and representation varieties." Inventiones mathematicae 159, no. 2 (2005): 317–67. http://dx.doi.org/10.1007/s00222-004-0390-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

DASKALOPOULOS, GEORGIOS, CHIKAKO MESE, ANDREW SANDERS, and ALINA VDOVINA. "Surface groups acting on spaces." Ergodic Theory and Dynamical Systems 39, no. 7 (2017): 1843–56. http://dx.doi.org/10.1017/etds.2017.103.

Full text
Abstract:
Harmonic map theory is used to show that a convex cocompact surface group action on a $\text{CAT}(-1)$ metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of the action is equal to 1. This provides another proof of a result of Bonk and Kleiner. More generally, we show that the limit set of every convex cocompact surface group action on a $\text{CAT}(-1)$ space has Hausdorff dimension $\geq 1$, where the inequality is strict unless the action is Fuchsian.
APA, Harvard, Vancouver, ISO, and other styles
29

Maclachlan, C., and A. W. Reid. "Parametrizing Fuchsian Subgroups of the Bianchi Groups." Canadian Journal of Mathematics 43, no. 1 (1991): 158–81. http://dx.doi.org/10.4153/cjm-1991-009-1.

Full text
Abstract:
Let dbe a positive square-free integer and let Od denote the ring of integers in . The groups PSL2(Od) are collectively known as the Bianchi groups and have been widely studied from the viewpoints of group theory, number theory and low-dimensional topology. The interest of the present article is in geometric Fuchsian subgroups of the groups PSL2(Od). Clearly PSL2 is such a subgroup; however results of [18], [19] show that the Bianchi groups are rich in Fuchsian subgroups.
APA, Harvard, Vancouver, ISO, and other styles
30

Benoist, Yves, and Hee Oh. "Fuchsian groups and compact hyperbolic surfaces." L’Enseignement Mathématique 62, no. 1 (2016): 189–98. http://dx.doi.org/10.4171/lem/62-1/2-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fera, Joseph. "Exceptional points for cocompact Fuchsian groups." Annales Academiae Scientiarum Fennicae Mathematica 39 (February 2014): 463–72. http://dx.doi.org/10.5186/aasfm.2014.3917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Matsuzaki, Katsuhiko. "Isoperimetric constants for conservative Fuchsian groups." Kodai Mathematical Journal 28, no. 2 (2005): 292–300. http://dx.doi.org/10.2996/kmj/1123767010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Keskin, Refik. "A Note on Some Fuchsian Groups." Algebra Colloquium 12, no. 01 (2005): 139–48. http://dx.doi.org/10.1142/s1005386705000131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Voight, John. "Computing fundamental domains for Fuchsian groups." Journal de Théorie des Nombres de Bordeaux 21, no. 2 (2009): 467–89. http://dx.doi.org/10.5802/jtnb.683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Waterman, P. L., and C. Maclachlan. "Fuchsian groups and algebraic number fields." Transactions of the American Mathematical Society 287, no. 1 (1985): 353. http://dx.doi.org/10.1090/s0002-9947-1985-0766224-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Beşenk, Murat. "A remark on some fuchsian groups." New Trends in Mathematical Science 2, no. 6 (2018): 238–46. http://dx.doi.org/10.20852/ntmsci.2018.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bonahon, Francis. "Kleinian groups which are almost fuchsian." Journal für die reine und angewandte Mathematik (Crelles Journal) 2005, no. 587 (2005): 1–15. http://dx.doi.org/10.1515/crll.2005.2005.587.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Connes, A., F. A. Sukochev, and D. V. Zanin. "Trace theorem for quasi-Fuchsian groups." Sbornik: Mathematics 208, no. 10 (2017): 1473–502. http://dx.doi.org/10.1070/sm8794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vulakh, L. Ya. "The Markov spectra for Fuchsian groups." Transactions of the American Mathematical Society 352, no. 9 (2000): 4067–94. http://dx.doi.org/10.1090/s0002-9947-00-02455-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

McKay, John, and Abdellah Sebbar. "Fuchsian groups, Schwarzians, and theta functions." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, no. 4 (1998): 343–48. http://dx.doi.org/10.1016/s0764-4442(99)80045-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Maclachlan, C., and G. Rosenberger. "Two-generator arithmetic Fuchsian groups. II." Mathematical Proceedings of the Cambridge Philosophical Society 111, no. 1 (1992): 7–24. http://dx.doi.org/10.1017/s0305004100075113.

Full text
Abstract:
An arithmetic Fuchsian group is necessarily of finite covolume and so of the first kind. From the structure theorem for finitely generated Fuchsian groups those of the first kind which can be generated by two elements are triangle groups, groups of signature (1;q;0) or (1; ; 1) or groups of signature (0;2,2,2,e;0) where e is odd 6. It is known that there are finitely many conjugacy classes of arithmetic groups with these signatures or indeed with any fixed signature 3, 15. In the case of non-cocompact groups, the arithmetic groups are conjugate to groups commensurable with the classical modula
APA, Harvard, Vancouver, ISO, and other styles
42

Astala, K., and M. Zinsmeister. "Holomorphic families of quasi-Fuchsian groups." Ergodic Theory and Dynamical Systems 14, no. 2 (1994): 207–12. http://dx.doi.org/10.1017/s0143385700007847.

Full text
Abstract:
AbstractWe produce a holomorphic family of infinitely generated quasi-Fuchsian groups such that the Hausdorff dimension of the limit set L (Гλ) is identical to 1 for small λ, but strictly greater than 1 for λ ˜ 1. In particular, this shows that Hausdorff dimension does not depend real analytically on the parameter λ, contrary to the case of finitely generated groups.
APA, Harvard, Vancouver, ISO, and other styles
43

Sun, MingFeng, and YuLiang Shen. "Teichmüller spaces for pointed Fuchsian groups." Science China Mathematics 53, no. 8 (2010): 2031–38. http://dx.doi.org/10.1007/s11425-010-3126-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Raghupathi, Mrinal. "Abrahamse's interpolation theorem and Fuchsian groups." Journal of Mathematical Analysis and Applications 355, no. 1 (2009): 258–76. http://dx.doi.org/10.1016/j.jmaa.2009.01.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fine, Benjamin. "Fuchsian Embeddings in the Bianchi Groups." Canadian Journal of Mathematics 39, no. 6 (1987): 1434–45. http://dx.doi.org/10.4153/cjm-1987-067-1.

Full text
Abstract:
If d is a positive square free integer we let Od be the ring of integers in and we let Γd = PSL2(Od), the group of linear fractional transformationsand entries from Od {if d = 1, ad – bc = ±1}. The Γd are called collectively the Bianchi groups and have been studied extensively both as abstract groups and in automorphic function theory {see references}. Of particular interest has been Γ1 – the Picard group. Group theoretically Γ1, is very similar to the classical modular group M = PSL2(Z) both in its total structure [4, 6], and in the structure of its congruence subgroups [8]. Where Γ1 and M di
APA, Harvard, Vancouver, ISO, and other styles
46

Vulakh, L. Ya. "On Hurwitz Constants for Fuchsian Groups." Canadian Journal of Mathematics 49, no. 2 (1997): 406–17. http://dx.doi.org/10.4153/cjm-1997-020-x.

Full text
Abstract:
AbstractExplicit bounds for the Hurwitz constants for general cofinite Fuchsian groups have been found. It is shown that the bounds obtained are exact for the Hecke groups and triangular groups with signature (0 : 2, p, q).
APA, Harvard, Vancouver, ISO, and other styles
47

McShane, Greg. "Geodesic intersections and isoxial Fuchsian groups." Annales de la Faculté des sciences de Toulouse : Mathématiques 28, no. 3 (2019): 471–89. http://dx.doi.org/10.5802/afst.1606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Labourie, FranÇois. "Fuchsian Affine Actions of Surface Groups." Journal of Differential Geometry 59, no. 1 (2001): 15–31. http://dx.doi.org/10.4310/jdg/1090349279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ushijima, Akira. "Generic fundamental polygons for Fuchsian groups." Pacific Journal of Mathematics 251, no. 2 (2011): 453–68. http://dx.doi.org/10.2140/pjm.2011.251.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Long, D. D., C. Maclachlan, and A. W. Reid. "Arithmetic Fuchsian Groups of Genus Zero." Pure and Applied Mathematics Quarterly 2, no. 2 (2006): 569–99. http://dx.doi.org/10.4310/pamq.2006.v2.n2.a9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!