Academic literature on the topic 'Fuel drop'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuel drop.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuel drop"

1

Choi, Seok Ki, Il Kon Choi, Ho Yun Nam, Jong Hyeun Choi, and Hoon Ki Choi. "Measurement of Pressure Drop in a Full-Scale Fuel Assembly of a Liquid Metal Reactor." Journal of Pressure Vessel Technology 125, no. 2 (2003): 233–38. http://dx.doi.org/10.1115/1.1565076.

Full text
Abstract:
An experimental study has been carried out to measure the pressure drop in a 271-pin fuel assembly of a liquid metal reactor. The rod pitch to rod diameter ratio P/D of the fuel assembly is 1.2 and the wire lead length to rod diameter ratio H/D is 24.84. Measurements are made for five different sections in a fuel assembly; inlet orifice, fuel assembly inlet, wire-wrapped fuel assembly, fuel assembly outlet and fuel assembly upper region. A series of water experiments have been conducted changing flow rate and water temperature. It is shown that the pressure drops in the inlet orifice and in th
APA, Harvard, Vancouver, ISO, and other styles
2

Chin, J. S., D. Nickolaus, and A. H. Lefebvre. "Influence of Downstream Distance on the Spray Characteristics of Pressure-Swirl Atomizers." Journal of Engineering for Gas Turbines and Power 108, no. 1 (1986): 219–24. http://dx.doi.org/10.1115/1.3239875.

Full text
Abstract:
An analytical study is made of the factors that are responsible for the observed changes in fuel spray characteristics with axial distance downstream of a pressure-swirl nozzle. To simplify the analysis the effect of fuel evaporation is neglected, but full account is taken of the effects of spray dispersion and drop acceleration (or deceleration). Equations are derived and graphs are presented to illustrate the manner and extent to which the variations of mean drop size and drop-size distribution with axial distance are governed by such factors as ambient air pressure and velocity, fuel inject
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, Kwan Yee, and Joseph K.-W. Lam. "Water drop runoff in aircraft fuel tank vent systems." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 24 (2016): 4548–63. http://dx.doi.org/10.1177/0954406216669175.

Full text
Abstract:
Water condensation in aircraft fuel tank vent systems can run off to the fuel systems, where it can freeze to ice or support microbial growth in the fuel tanks. A laboratory scale test has been designed to investigate the ingress and runoff of water in the aircraft fuel tank vent pipes. The experiments are to determine the dual effects of air flow shear and hydrophobicity on water condensation in the vent pipes during descent from cruising altitudes. Results show only downslope runoff occurs and for large drop volumes where the height of the water drop is comparable with the height of the air
APA, Harvard, Vancouver, ISO, and other styles
4

Girin, O. G. "Wake of a shattering fuel drop." Reports of the National Academy of Sciences of Ukraine, no. 5 (May 22, 2015): 47–54. http://dx.doi.org/10.15407/dopovidi2015.05.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Girin, A. G. "Wake of a Shattering Fuel Drop." Combustion Science and Technology 184, no. 10-11 (2012): 1412–26. http://dx.doi.org/10.1080/00102202.2012.691064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qin, Hao, Huicui Chen, and Tong Zhang. "Study on anode single-phase flow pressure drop law of proton exchange membrane fuel cell." Journal of Physics: Conference Series 2534, no. 1 (2023): 012009. http://dx.doi.org/10.1088/1742-6596/2534/1/012009.

Full text
Abstract:
Abstract This article briefly describes the research status of water flooding and pressure drop (PD) of the fuel cell. Then, a mathematical model of the single-phase flow PD of the fuel cell anode is established using hydrodynamics theory and referring to existing research. Then, the three-dimensional fuel cell model is established with Gambit software, and the grid is divided. Then, the numerical simulation of the single-phase flow of the fuel cell is carried out with Fluent software. Through the analysis of the simulation data, the relationship between the fuel cell anode pressure drops and
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, R. H., and C.-M. Lai. "Collision outcome of a water drop on the surface of a deep diesel fuel pool." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 7 (2011): 1638–48. http://dx.doi.org/10.1177/0954406211403066.

Full text
Abstract:
This study investigated the collision of water drops with diesel fuel. The target liquid was selected not only because this interaction is commonly observed in many fires but also because diesel fuel exhibits similar viscosity to heavy oils on fire. Investigated collision phenomena include water drop disintegration, cavity development, droplet ejection from the underside of the cavity, droplet ejection from the liquid (diesel fuel) crown rim, and formation of water-in-diesel compound drops. Results suggest that the number of water droplets from the disintegrated water drop increases non-linear
APA, Harvard, Vancouver, ISO, and other styles
8

Kalinina, Elena, Doug Ammerman, Carissa Grey, Gregg Flores, Sylvia Saltzstein, and Nicholas Klymyshyn. "Full-Scale Assembly 30 cm Drop Test." MRS Advances 5, no. 5-6 (2019): 265–74. http://dx.doi.org/10.1557/adv.2019.477.

Full text
Abstract:
ABSTRACTCan Spent Nuclear Fuel withstand the shocks and vibrations experienced during normal conditions of transport? This question was the motivation for the multi-modal transportation test (MMTT) (Summer 2017), 1/3-scale cask 30 cm drop test (December 2018), and full-scale assembly 30 cm drop tests (June 2019). The full-scale ENSA ENUN 32P cask with 3 surrogate 17x17 PWR assemblies was used in the MMTT. The 1/3-scale cask was a mockup of this cask. The 30 cm drop tests provided the accelerations on the 1/3-scale dummy assemblies. These data were used to design full-scale assembly drop tests
APA, Harvard, Vancouver, ISO, and other styles
9

Harstad, K. G., P. C. Le Clercq, and J. Bellan. "Statistical Model of Multicomponent-Fuel Drop Evaporation for Many-Drop Flow Simulations." AIAA Journal 41, no. 10 (2003): 1858–74. http://dx.doi.org/10.2514/2.1894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Girin, Oleksandr G. "DYNAMICS OF THE EMULSIFIED FUEL DROP MICROEXPLOSION." Atomization and Sprays 27, no. 5 (2017): 407–22. http://dx.doi.org/10.1615/atomizspr.2017017143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!