Academic literature on the topic 'Fuel economy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuel economy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuel economy"
Ford CEng, Terry. "Fuel Economy." Aircraft Engineering and Aerospace Technology 61, no. 12 (December 1989): 2–7. http://dx.doi.org/10.1108/eb036872.
Full textvon Hippel, Frank. "Automobile fuel economy." Energy 12, no. 10-11 (October 1987): 1063–71. http://dx.doi.org/10.1016/0360-5442(87)90062-4.
Full textHa, Taehun, Seonwoo Choi, Yoonwoo Lee, and Hoimyung Choi. "Development of Driver Fuel Economy Index for Real Road Fuel Economy." International Journal of Automotive Technology 20, no. 3 (May 24, 2019): 597–605. http://dx.doi.org/10.1007/s12239-019-0057-0.
Full textAhluwalia, Rajesh K., X. Wang, A. Rousseau, and R. Kumar. "Fuel economy of hydrogen fuel cell vehicles." Journal of Power Sources 130, no. 1-2 (May 2004): 192–201. http://dx.doi.org/10.1016/j.jpowsour.2003.12.061.
Full textAhluwalia, Rajesh K., X. Wang, and A. Rousseau. "Fuel economy of hybrid fuel-cell vehicles." Journal of Power Sources 152 (December 2005): 233–44. http://dx.doi.org/10.1016/j.jpowsour.2005.01.052.
Full textLin, Zhenhong, and David Greene. "Predicting Individual Fuel Economy." SAE International Journal of Fuels and Lubricants 4, no. 1 (April 12, 2011): 84–95. http://dx.doi.org/10.4271/2011-01-0618.
Full textPrzekota, Grzegorz. "Do High Fuel Prices Pose an Obstacle to Economic Growth? A Study for Poland." Energies 15, no. 18 (September 9, 2022): 6606. http://dx.doi.org/10.3390/en15186606.
Full textRodríguez-Fernández, José, Ángel Ramos, Javier Barba, Dolores Cárdenas, and Jesús Delgado. "Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating." Energies 13, no. 13 (July 7, 2020): 3499. http://dx.doi.org/10.3390/en13133499.
Full textBarbir, Frano. "Fuel cells and hydrogen economy." Chemical Industry and Chemical Engineering Quarterly 11, no. 3 (2005): 105–13. http://dx.doi.org/10.2298/ciceq0503105b.
Full textLiu, Changzheng, Elizabeth C. Cooke, David L. Greene, and David S. Bunch. "Feebates and Fuel Economy Standards." Transportation Research Record: Journal of the Transportation Research Board 2252, no. 1 (January 2011): 23–30. http://dx.doi.org/10.3141/2252-04.
Full textDissertations / Theses on the topic "Fuel economy"
Поповка, Сніжана Андріївна, and Snizhana Andreevna Popovka. "Sustainable aviation: fuel economy." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50767.
Full textAviation industry plays an important role in our modern life. It is an essential part not only in the economy and other fields of our life, but also it has extremely large effects on the environment system. Global warming, ozone depletion and other changes in nature are the results of the engine noises, air emissions. Approximately 2.46% of the global human-made CO2 emissions are from the aviation industry, and this number is increasing faster and faster as the demand for air transportations is skyrocketing. So, one of the main challenges in our days is to reduce CO2 emissions in the aviation industry. Also, this direction is strongly connected with the 17 United Nations Sustainable Development Goals. To protect, restore the environment and provide sustainable development, some airlines have started using biofuels. For instance, the Lufthansa Group made Sustainable Aviation Fuels (SAF), with the help of which flights have become CO2 - neutral. But not every airline can afford it because of large expanses. To reduce CO2 emissions, other methods for fuel economy are used in the aviation industry. Because when an airline reduces fuel consumption, then air emissions are also reduced
Авіаційна промисловість відіграє важливу роль у нашому сучасному житті. Він є важливою складовою не лише в економіці та інших сферах нашого життя, але також має надзвичайно великий вплив на систему навколишнього середовища. Глобальне потепління, руйнування озонового шару та інші зміни в природі - це результати шумів у двигуні, викидів в атмосферу. Приблизно 2,46% світових викидів CO2, вироблених людиною, припадає на авіаційну промисловість, і ця кількість зростає все швидше і швидше, оскільки попит на повітряні перевезення стрімко зростає. Отже, однією з головних проблем у наші дні є зменшення викидів CO2 в авіаційній галузі. Крім того, цей напрямок тісно пов'язаний з 17 цілями сталого розвитку ООН. Для захисту, відновлення навколишнього середовища та забезпечення сталого розвитку деякі авіакомпанії почали використовувати біопаливо. Наприклад, Lufthansa Group створила стійке авіаційне паливо (SAF), за допомогою якого рейси стали CO2 - нейтральними. Але не кожна авіакомпанія може собі це дозволити через великі простори. Для зменшення викидів CO2 в авіаційній промисловості використовуються інші методи економії палива. Тому що, коли авіакомпанія зменшує споживання палива, тоді викиди в атмосферу також зменшуються
Salih, Fawzi Mohamed. "Automotive fuel economy measures and fuel usage in Sudan." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293763.
Full textLee, Shin. "Intelligent techniques for improved engine fuel economy." Thesis, University of Brighton, 2011. https://research.brighton.ac.uk/en/studentTheses/da615c38-5aaa-4b64-b857-eecb1e3a061c.
Full textOlofsson, Oscar. "Investigation of Accuracy in Fuel Economy Measurement Methods." Thesis, KTH, Fordonsdynamik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180458.
Full textThe background of this master thesis is the increased importance of improving vehicle fuel economy due to factors such as decreasing oil resources and growing fuel prices. Earlier performed tests have shown that real-world fuel economy is deviating signif-icantly from fuel economy (FE) measured in simulated road driving. In this thesis the accuracy of the fuel economy measurement methods used in such measurements are investigated. It is done by examining the performance of different fuel economy measurement devices and by performing a test series with subsequently increased complexity. The test series consists both of chassis dynamometer and on road test-ing. All tests are performed with a Scania G450 long haulage truck which has been equipped with a portable fuel flow meter and a portable emissions measurement sys-tem (PEMS). Variables such as temperatures, engine mode and torques taken up by different auxiliary devices are analysed to improve the understanding about how the vehicle state is differing between different test drives. It is investigated if sensor fusion can be used to improve accuracy and repeatability in cases when multiple fuel consumption (FC) measurement devices are used. Obtained results show that the accuracy of the different fuel economy measurement methods investigated has an order of magnitude of 1 % for real-world on-road testing. The results do also show that a change of engine frictional losses are influencing the fuel economy significant in controlled environments. Finally it is concluded that the vehicle internal fuel economy estimation is reacting to changes in fuel economy in a similar way as the fuel flow meter estimation. The method based on exhaust gas analysis is deviating from this behaviour.
Lake, Timothy Hugh. "Gasoline combustion systems for improved fuel economy and emissions." Thesis, University of Brighton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302289.
Full textTorres, Arevalo Arturo Alejandro, and Changhao Han. "Air conditioning system modeling for car fuel economy simulation." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246125.
Full textPå ett fordon utgör luftkonditioneringssystem den främsta extraordi-nära energibelastningen, vilket har stor påverkan på bränsleförbruk-ning och koldioxidutsläpp. Av detta skäl är det önskvärt att förutse det inflytande som detta system har på fordonets bränsleekonomi. Detta arbete är har för avsikt att simulera luftkonditioneringssystemet för ett plug-in hybridfordon för att förutsäga energiförbrukningen. GT-SUITE valdes som simuleringsverktyg, där klimatanläggningen, som är ett ångkomprimerat kylsystem, modellerades genom att speci-ficera komponenterna: kompressor, förångare, värmeutvidgningsven-til och kondensor. Dessutom beaktades ytterligare delsystem som på-verkar energiåtgången, nämligen fordonets hytt och batterikylnings-loop. Den simulerade modellen visar en god korrelation med testdata för be-tydelsefulla parametrar såsom kompressorns energiförbrukning och lufttemperaturen efter förångarsteget. Den procentuella skillnaden mel-lan testdata och simuleringen för den extra energiförbrukningen (ener-gi som förbrukas av A/C-kompressorn och laddningen av lågspän-ningsbatteriet) är 6,25%.
Fan, Qin. "Hedonic Price Model for Light-Duty Vehicles: Consumers' Valuations of Automotive Fuel Economy." Fogler Library, University of Maine, 2009. http://www.library.umaine.edu/theses/pdf/FanQ2009.pdf.
Full textNicklin, Timothy J. "Automation of vehicle testing for fuel economy and emissions optimisation." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488732.
Full textMcCoy, Colleen (Colleen M. ). "Fuel economy of a turbocharged, single-cylinder, four-stroke engine." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112556.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 56-57).
Agriculture is the main source of livelihood for a majority of India's population. However, despite the number of workers, the yield and the yield of principal crops in India is much lower than that in developed nations. One of the reasons for this is the lack of farming mechanization in India. One of the common ways to run farming equipment is by using a single-cylinder, four-stroke diesel engine. Diesel engines can be turbocharged in order to make them more efficient for less cost. A method has been found to turbocharge a single-cylinder diesel engine by adding an air capacitor to form a buffer between the intake and exhaust strokes. This thesis analyzes how the size and heat transfer of the air capacitor for this turbocharged diesel engine are correlated to engine performance and fuel economy. According to the modeled engine, a 3.0 liter capacitor had better peak power and fuel economy at high loads and speeds than a 2.4 or 1.25 liter capacitor. Additionally, forced convection cooling on the capacitor using a fan allowed the intake air density to increase, and the engine to have better fuel economy than the . However the peak power and fuel economy of the modeled naturally aspirated engine was better than the turbocharged engine for speeds below 2500 rpm. The general trends from the model were reflected in the experimental data. The forced convection increased cooling, and improved the intake air density. However, it was difficult to make any confident recommendations about the fuel economy based on the experimental data.
by Colleen McCoy.
S.B.
Rentschler, Jun Erik. "The economics and political economy of fossil fuel subsidy reforms." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040899/.
Full textBooks on the topic "Fuel economy"
United States. Government Accountability Office. Vehicle fuel economy. New York: Novinka Books, 2008.
Find full textEngineers, Society of Automotive, and SAE International Congress & Exposition (1994 : Detroit, Mich.), eds. Fuel systems for fuel economy and emissions. Warrendale, PA: Society of Automotive Engineers, 1994.
Find full textStone, Richard. Motor Vehicle Fuel Economy. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1.
Full textUnited States. Environmental Protection Agency. Office of Transportation and Air Quality. EPA's fuel economy programs. [Washington, D.C.]: United States Environmental Protection Agency, Office of Transportation and Air Quality, 2006.
Find full textTransport Research Laboratory (Great Britain)pt. of Transport., ed. Road vehicle fuel economy. London: H.M.S.O., 1992.
Find full textSallee, James. The taxation of fuel economy. Cambridge, MA: National Bureau of Economic Research, 2010.
Find full textSallee, James. The taxation of fuel economy. Cambridge, MA: National Bureau of Economic Research, 2010.
Find full textEngineers, Society of Automotive, and SAE International Congress & Exposition (1996 : Detroit, Mich.), eds. Analyzing fuel systems technology for fuel economy and emissions. Warrendale, PA: Society of Automotive Engineers, 1996.
Find full text1950-, Kleindienst Taduesz, and United States. Environmental Protection Agency, eds. Emissions and fuel economy of DOE flex-fuel vehicles. [Washington, D.C: U.S. Environmental Protection Agency, 1992.
Find full textBook chapters on the topic "Fuel economy"
Nuttall, William J., and Adetokunboh T. Bakenne. "Towards a Hydrogen Economy." In Fossil Fuel Hydrogen, 43–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30908-4_4.
Full textNuttall, William J., and Adetokunboh T. Bakenne. "Introduction—The Hydrogen Economy Today." In Fossil Fuel Hydrogen, 1–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30908-4_1.
Full textStone, Richard. "Diesel Engine Fuel Economy." In Motor Vehicle Fuel Economy, 54–80. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_3.
Full textDevlin, Mark T. "Fuel Economy: Lubricant Factors." In Encyclopedia of Tribology, 1415–21. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_938.
Full textBizon, Nicu. "Fuel Economy Maximization Strategies." In Optimization of the Fuel Cell Renewable Hybrid Power Systems, 243–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40241-9_6.
Full textStone, Richard. "Spark Ignition Engine Fuel Economy." In Motor Vehicle Fuel Economy, 19–53. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_2.
Full textStone, Richard. "Introduction." In Motor Vehicle Fuel Economy, 1–18. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_1.
Full textStone, Richard. "Transmission Systems." In Motor Vehicle Fuel Economy, 81–118. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_4.
Full textStone, Richard. "Vehicle Aerodynamics." In Motor Vehicle Fuel Economy, 119–53. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_5.
Full textStone, Richard. "Vehicle Design." In Motor Vehicle Fuel Economy, 154–75. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-09399-1_6.
Full textConference papers on the topic "Fuel economy"
Bauer, Peter, Sam Mingo, Blake Lantero, and Jim Larkin. "On fuel economy bounds." In 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422734.
Full textOrban, John E., Michael J. Murphy, and M. Claire Matthews. "Vehicle Fuel Economy-The CleanFleet Alternative Fuels Project." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950396.
Full textDuoting, Xu, Liu Tong, and Huang Heng. "Fuel Cycle Economy of Accident Tolerant Fuel Assemblies." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81384.
Full text"Fuel cells and hydrogen economy." In 2010 IEEE International Conference on Industrial Technology. IEEE, 2010. http://dx.doi.org/10.1109/icit.2010.5472597.
Full textBhat, Anoop, and A. K. Vashisth. "Fuel Economy: A Kaizen Approach." In SIAT 2007. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-26-024.
Full textRovai, Fernando Fusco. "Right Shifting for Fuel Economy." In 2019 SAE Brasil Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2019-36-0095.
Full textAnderson, S. R., D. M. Lamberson, T. J. Blohm, and W. Turner. "Hybrid Route Vehicle Fuel Economy." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-1164.
Full textGolverk, A. "Diesel Engines Fuel Economy Characteristics." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941730.
Full textAkiyama, Kenyu, Fumio Ueda, Johji Miyake, Kazuyoshi Tasaka, and Shinichi Sugiyama. "Fuel Economy Performance of the Highly Efficient Fuel Economy Oils Using Chassis Dynamometer Test." In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/932690.
Full textDing, Yi, Ed Kulik, John Bradley, Thomas Kochis, Fred Thomas, Tony Markel, and Ed Sun. "Hydrogen Fuel Cell Vehicle Fuel Economy Measurements and Calculation." In SAE 2004 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-1339.
Full textReports on the topic "Fuel economy"
None, None. Model Year 2019 Fuel Economy Guide: EPA Fuel Economy Estimates. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1580208.
Full textNone, None. Model Year 2020 Fuel Economy Guide: EPA Fuel Economy Estimates. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1580210.
Full textDavis, Lucas, and Christopher Knittel. Are Fuel Economy Standards Regressive? Cambridge, MA: National Bureau of Economic Research, December 2016. http://dx.doi.org/10.3386/w22925.
Full textSallee, James. The Taxation of Fuel Economy. Cambridge, MA: National Bureau of Economic Research, October 2010. http://dx.doi.org/10.3386/w16466.
Full textSinger, Mark. Consumer Views: Importance of Fuel Economy. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1357414.
Full textMoreno-Cruz, Juan, and M. Scott Taylor. Food, Fuel and the Domesday Economy. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27414.
Full textSteinbugler, M., and J. Ogden. Fuel economy and range estimates for fuel cell powered automobiles. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460234.
Full textGordon, Deborah, David L. Greene, Marc H. Ross, and Tom P. Wenzel. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/929315.
Full textFukuhara, Yoshiki, Naoya Kimata, and Takashi Suzuki. Improving the Fuel Economy of Supercharged Engine. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9118.
Full textFrame, Edwin A., Joe Redfield, Glenn Wendel, Vikram Iyengar, Jack Harris, and Walter Olson. M1078 Hybrid Hydraulic Vehicle Fuel Economy Evaluation. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada579702.
Full text