Academic literature on the topic 'Fuelling spark ignited engines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuelling spark ignited engines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuelling spark ignited engines"
Finneran, Joshua, Colin P. Garner, and Francois Nadal. "The fundamental effects of in-cylinder evaporation of liquefied natural gas fuels in engines." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235, no. 1 (July 28, 2020): 211–30. http://dx.doi.org/10.1177/0954407020941710.
Full textNilsson, Ylva, and Erik Frisk. "DETECTING KNOCK IN SPARK IGNITED ENGINES." IFAC Proceedings Volumes 38, no. 1 (2005): 158–63. http://dx.doi.org/10.3182/20050703-6-cz-1902.01914.
Full textZhao, F., M. C. Lai, and D. L. Harrington. "Automotive spark-ignited direct-injection gasoline engines." Progress in Energy and Combustion Science 25, no. 5 (October 1999): 437–562. http://dx.doi.org/10.1016/s0360-1285(99)00004-0.
Full textGong, C., and S. Thompson. "An AFR estimator for spark-ignited engines." Transactions of the Institute of Measurement and Control 17, no. 1 (January 1995): 35–43. http://dx.doi.org/10.1177/014233129501700105.
Full textSingh, Akhilendra Pratap, Anuj Pal, Neeraj Kumar Gupta, and Avinash Kumar Agarwal. "Particulate emissions from laser ignited and spark ignited hydrogen fueled engines." International Journal of Hydrogen Energy 42, no. 24 (June 2017): 15956–65. http://dx.doi.org/10.1016/j.ijhydene.2017.04.031.
Full textZsiga, Norbert, Christoph Voser, Christopher Onder, and Lino Guzzella. "Intake Manifold Boosting of Turbocharged Spark-Ignited Engines." Energies 6, no. 3 (March 13, 2013): 1746–63. http://dx.doi.org/10.3390/en6031746.
Full textHerynek, Roland, Heiko Kaiser, Winfried Langer, and Frank Miller. "Future Engine Control for Spark-Ignited CNG Engines." Auto Tech Review 1, no. 12 (March 1, 2012): 34–38. http://dx.doi.org/10.1365/s40112-012-0191-9.
Full textHerynek, Roland, Kaufmann Heiko Kaiser, Winfried Langer, and Frank Miller. "Future Engine Control for Spark-Ignited Cng Engines." Auto Tech Review 3, no. 8 (August 2014): 30–35. http://dx.doi.org/10.1365/s40112-014-0715-6.
Full textEriksson, Lars, Simon Frei, Christopher Onder, and Lino Guzzella. "CONTROL AND OPTIMIZATION OF TURBOCHARGED SPARK IGNITED ENGINES." IFAC Proceedings Volumes 35, no. 1 (2002): 283–88. http://dx.doi.org/10.3182/20020721-6-es-1901.01515.
Full textHerynek, Roland, Heiko Kaiser, Winfried Langer, and Frank Miller. "Future Engine Control For Spark-Ignited CNG Engines." MTZ worldwide 73, no. 6 (June 2012): 42–46. http://dx.doi.org/10.1007/s38313-012-0187-5.
Full textDissertations / Theses on the topic "Fuelling spark ignited engines"
Gong, Cheng. "Transient fuelling control strategies for four stroke engines." Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336715.
Full textThornhill, Michael Joseph. "Idle speed control of spark ignited engines." Thesis, Queen's University Belfast, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286863.
Full textSleightholme-Albanis, G. R. "Measurements of spark-ignition engine fuelling variations." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241120.
Full textRevier, Bridget M. (Bridget Mary). "Phenomena that determine knock onset in spark-ignited engines." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35635.
Full textIncludes bibliographical references (p. 59).
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timings before, at, and after knock onset for four different octane-rated toluene reference fuels. This data was then processed and analyzed in various ways to gain insight into the autoignition phenomena that lead to knock. This was done to develop a more fundamentally based prediction methodology that incorporates both a physical and chemical description of knock. The collected data was also used to develop a method of data processing that would detect knock in real time without the need to have an operator listening to the engine. Bandpass filters and smoothing techniques were used to process the data. The processed data was then used to determine knock intensities for each cycle for both the cylinder pressure data and microphone signal. Also, the rate of build-up before reaching peak amplitude in a bandpass filtered pressure trace was found. A trend was found showing that cycles with knock intensities greater than 1 bar with rapid build-up (5-10 oscillations) before reaching the peak are the type the cycles whose autoignition events lead to engine knock.
(cont.) The cylinder pressure knock intensities and microphone knock intensities were plotted and then fit with a linear trendline. The R2 value for these linear trendlines will transition from considerably lower values to values greater than 0.85 at the spark timing of knock onset. It is believed that the higher cylinder pressure knock intensities, in conjunction with the faster build-up of 5-10 oscillations before reaching peak, helps to explain the knock phenomena. It supports conclusions from previous works that the end gas contains one or more hot spots that autoignite in sequence causing pressure gradients that can trigger rapid pressure oscillations. These pressure oscillations can cause block and head vibrations that lead to audible noise outside the engine.
by Bridget M. Revier.
S.M.
Palipana, Aruna Susantha. "CFD modelling of natural gas combustion in spark ignited engines." Thesis, Loughborough University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327653.
Full textHamberg, Stefan. "Concept investigation for misfire detection in spark-ignited gas engines." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263929.
Full textSom en leverantör av hållbara transportlösningar tillverkar Scania gasmotorer. Tankade med biogas minskar dessa utsläppen av koldioxid avsevärt jämfört med standarddiesel. Gasmotorerna är utrustade med en trevägskatalysator som omvandlar kolväten, kolmonoxid och kväveoxider till mindre skadliga ämnen. En misständning innebär utebliven förbränning. Detta beror typiskt sett antingen på fel i tändsystemet, fel i bränslesystemet eller felaktigt luft/bränsleförhållande i cylindern. Om en misständning sker kan oförbränt bränsle ta sig till katalysatorn, där bränslet förbränns. Detta ökar temperaturen i katalysatorn, vilket kan försämra dess prestanda. Det kan även leda till ökade utsläpp av kolväten. Fel som kan påverka utsläpp måste enligt lagstiftning kontinuerligt övervakas av fordonet. Scanias gasmotorer kan komma att säljas på den nordamerikanska marknaden, där kraven på misständningsdetektering är striktare än i övriga världen. Det kan även förväntas att kommande europeisk lagstiftning kommer att vara strängare än tidigare. Tekniken för misständningsdetektering på nuvarande gasmotorer använder dedikerad hårdvara. En misständningsdetekteringsmetod som använder signalen från befintliga givare kan leda till kostnadsbesparingar. Efter en litteraturstudie valdes lämpliga detekteringsmetoder ut för vidare undersökning. Data inhämtades från körningar i provcell och analyserades offline. Metoder baserade på avgasmottryck och på knacksensordata utvärderades. En algoritm utvecklad för misständningsdetektering på Scanias dieselmotorer utvärderades. Med vissa modifieringar verkar den gå att tillämpa på gasmotorer. Förenklade varianter av denna metod utvärderades, även dessa med lovande resultat. En metod baserad på Fouriertransform av lägre ordningens frekvenser i avgastrycksignalen visade utmärkta resultat, eventuellt på bekostnad av processorlast. En knacksensorbaserad metod uppvisade lovande resultat. Dock verkar placeringen av knacksensorerna vara kritisk, och vidare utvärdering krävs. Hemligstämplade delar i denna rapport har ersatts av symbolen □. Axelvärden i vissa figurer har raderats av samma skäl.
Lagally, Christie D. "A morphological survey of particulate matter emissions from spark-ignited engines." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33754.
Full textKasseris, Emmanuel P. "Knock limits in spark ignited direct injected engines using gasoline/ethanol blends." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69496.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 130-134).
Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore especially advantageous due to the high heat of vaporization of ethanol. Additionally ethanol blends also display superior chemical resistance to auto-ignition, therefore allowing the further extension of knock limits. An engine with both DI and port fuel injection (PFI) was used to obtain knock onset limits for five gasoline/ethanol blends and different intake air temperatures. Using PFI as a baseline, the amount the intake air needed to be heated in DI to knock at the same conditions as PFI is the effective charge cooling realized and ranges from ~14°C for gasoline to ~49°C for E85. The Livengood-Wu auto-ignition integral in conjunction with the Douad-Eyzat time to auto-ignition correlation was used to predict knock onset. The preexponential factor in the correlation was varied to fit the experimental data. An "Effective Octane Number-ONEFF" is thus obtained for every blend ranging from 97 ONEFF. for gasoline to 115 ONEFF. for E85. ONEFF. captures the chemistry effect on knock and shows that there is little antiknock benefit beyond 30-40% ethanol by volume unless the fuel is used in a DI engine. Using this approach, the anti-knock benefit of charge cooling can also be quantified as an octane number. To achieve that, the ONEFF. calculated for an actual DI operating point including charge cooling effects is compared to the ONEFF. obtained from the auto-ignition integral if the unburned mixture temperature is offset to cancel the charge cooling out. The resulting increase in ONEFF., which can be viewed as an "Evaporative Octane Number" ranges from 5 ONEFF. for gasoline to 18 ONEFF. for E85.
by Emmanuel P. Kasseris.
Ph.D.
Swartz, Matthew M. "Nitric oxide conversion in a spark ignited natural gas engine." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=4009.
Full textTitle from document title page. Document formatted into pages; contains xi, 79 p. : ill. Includes abstract. Includes bibliographical references (p. 67-70).
Flärdh, Oscar. "Modeling, Control and Optimization of theTransient Torque Response in DownsizedTurbocharged Spark Ignited Engines." Doctoral thesis, KTH, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102743.
Full textQC 20120928
Books on the topic "Fuelling spark ignited engines"
Giordano, Dan. Improving efficiency of spark-ignited, stoichiometrically operated natural gas engines. Woodland Park, Colorado]: Sturman Industries, 2013.
Find full textCastaldini, Carlo. Environmental assessment of NOx control on a spark-ignited, large-bore, reciprocating internal-combustion engine. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1986.
Find full textZhao, F., M. C. Lai, and D. L. Harrington. Automotive Spark-Ignited Direct-Injection Gasoline Engines. Pergamon, 2000.
Find full textPalipana, Aruna Susantha. CFD modelling of natural gas combustion in spark ignited engines. 2000.
Find full textLys, X. Study of Homogeneous Combustion and Knock in Spark Ignited Engines. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1992.
Find full textZhao, Fuquan, David L. Harrington, and Ming-Chia D. Lai. Automotive Gasoline Direct-Injection Engines. SAE International, 2002. http://dx.doi.org/10.4271/9780768008821.
Full textBook chapters on the topic "Fuelling spark ignited engines"
Baritaud, T. A. "Flame Structure in Spark Ignited Engines, from Initiation to Free Propagation." In Lecture Notes in Engineering, 81–92. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9631-4_6.
Full textBresch-Pietri, Delphine, Thomas Leroy, Jonathan Chauvin, and Nicolas Petit. "Practical Delay Modeling of Externally Recirculated Burned Gas Fraction for Spark-Ignited Engines." In Delay Systems, 359–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01695-5_26.
Full textWang, Paul S., Niko Landin, Michael Bardell, Patrick Seiler, Jas Singh, David Ginter, and David T. Montgomery. "Reducing CO2 emissions in heavy-duty spark ignited engines for electric power using alternative fuels." In Proceedings, 223–42. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-31371-5_16.
Full textBartolucci, L., E. C. Chan, S. Cordiner, R. L. Evans, and V. Mulone. "The Ultra-Lean Partially Stratified Charge Approach to Reducing Emissions in Natural Gas Spark-Ignited Engines." In Energy, Environment, and Sustainability, 29–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3307-1_3.
Full textVedharaj, S. "Advanced Ignition System to Extend the Lean Limit Operation of Spark-Ignited (SI) Engines—A Review." In Energy, Environment, and Sustainability, 217–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1513-9_10.
Full textEvans, Robert L. "Lean-Burn Spark-Ignited Internal Combustion Engines." In Lean Combustion, 95–120. Elsevier, 2008. http://dx.doi.org/10.1016/b978-012370619-5.50005-4.
Full text"Fibre optic sensor arrangements for the analysis of flame propagation in standard spark ignited multicylinder engines." In Optical and Laser Diagnostics, 19–32. CRC Press, 2016. http://dx.doi.org/10.1201/b16835-5.
Full textConference papers on the topic "Fuelling spark ignited engines"
Lonari, Yashodeep, Christopher Polonowski, Jeffrey Naber, and Bo Chen. "Stochastic Knock Detection Model for Spark Ignited Engines." In SAE 2011 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-01-1421.
Full textPirault, Jean-Pierre, Thomas W. Ryan, Terrence F. Alger, and Charles E. Roberts. "Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0995.
Full textMachado, Guilherme Bastos, José Eduardo Mautone Barros, Sérgio Leal Braga, and Carlos Valois Maciel Braga. "Methodologies for Flame Propagation Velocity Determination in Spark Ignited Engines." In 26th SAE BRASIL Inernational Congress and Display. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-36-0193.
Full textFujimoto, Hiroaki, Atsushi Isogawa, and Naoto Matsumoto. "Catalytic Converter Applications for Two Stroke, Spark-Ignited Marine Engines." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951814.
Full textWojnar, Slawomir, Marek Honek, and Boris Rohal'-Ilkiv. "Nonlinear air-fuel ratio predictive control of spark ignited engines." In 2013 International Conference on Process Control (PC). IEEE, 2013. http://dx.doi.org/10.1109/pc.2013.6581413.
Full textFujimoto, Hiroaki, Atsushi lsogawa, and Naoto Matsumoto. "Catalytic Converter Applications for Two Stroke, Spark - Ignited Marine Engines." In International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941786.
Full textJones, M. G. Kingston, and D. M. Heaton. "Nebula Combustion System for Lean Burn Spark Ignited Gas Engines." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/890211.
Full textRigatos, Gerasimos, Pierluigi Siano, and Ivan Arsie. "Flatness-based embedded adaptive fuzzy control of spark ignited engines." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897720.
Full textBarbato, M. C., and A. E. Hassaneen. "Combustion characteristics of a preliminary design of a spark-ignited stratified charge generator." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0052.
Full textSingh, Eshan, Abdulrahman Mohammed, Inna Gorbatenko, and Mani Sarathy. "On the Relevance of Octane Sensitivity in Heavily Downsized Spark-Ignited Engines." In 15th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-24-0054.
Full textReports on the topic "Fuelling spark ignited engines"
Kass, Michael D. Corrosion Potential of Selected Bio-blendstock Fuel Candidates for Boosted Spark Ignited Engines. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1484989.
Full textFreitag, Alexander. High Efficiency Cost Optimized - Spark Ignited Natural Gas Engines (HECO-SING) (Final Report). Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1497085.
Full textFedewa, Andrew, Tom Stuecken, Edward Timm, Harold J. Schock, Tom-I. P. Shih, Manooch Koochesfahani, and Giles Brereton. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/809083.
Full textCathcart, Geoffrey, Gavin Dickson, and Steven Ahern. The Application of Air-Assist Direct Injection for Spark-ignited Heavy Fuel 2-Stroke and 4-Stroke Engines. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0065.
Full text