Journal articles on the topic 'Fully nonlinear operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fully nonlinear operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Esteban, Maria J., Patricio Felmer, and Alexander Quaas. "Eigenvalues for Radially Symmetric Fully Nonlinear Operators." Communications in Partial Differential Equations 35, no. 9 (August 10, 2010): 1716–37. http://dx.doi.org/10.1080/03605301003674848.
Full textVäth, Martin. "Degeneracy results for fully nonlinear integral operators." Indagationes Mathematicae 31, no. 5 (September 2020): 893–916. http://dx.doi.org/10.1016/j.indag.2020.06.009.
Full textNiu, Pengcheng, Leyun Wu, and Xiaoxue Ji. "Positive solutions to nonlinear systems involving fully nonlinear fractional operators." Fractional Calculus and Applied Analysis 21, no. 2 (April 25, 2018): 552–74. http://dx.doi.org/10.1515/fca-2018-0030.
Full textKuo, Hung-Ju, and Neil S. Trudinger. "Schauder estimates for fully nonlinear elliptic difference operators." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, no. 6 (December 2002): 1395–406. http://dx.doi.org/10.1017/s030821050000216x.
Full textBirindelli, Isabeau, and Stefania Patrizi. "A Neumann eigenvalue problem for fully nonlinear operators." Discrete & Continuous Dynamical Systems - A 28, no. 2 (2010): 845–63. http://dx.doi.org/10.3934/dcds.2010.28.845.
Full textCaffarelli, Luis, Luis Duque, and Hernán Vivas. "The two membranes problem for fully nonlinear operators." Discrete & Continuous Dynamical Systems - A 38, no. 12 (2018): 6015–27. http://dx.doi.org/10.3934/dcds.2018152.
Full textPatrizi, Stefania. "The Neumann problem for singular fully nonlinear operators." Journal de Mathématiques Pures et Appliquées 90, no. 3 (September 2008): 286–311. http://dx.doi.org/10.1016/j.matpur.2008.04.007.
Full textTarsia, Antonio. "Near operators theory and fully nonlinear elliptic equations." Journal of Global Optimization 40, no. 1-3 (January 22, 2008): 443–53. http://dx.doi.org/10.1007/s10898-007-9227-0.
Full textBirindelli, Isabeau, Françoise Demengel, and Fabiana Leoni. "Ergodic pairs for singular or degenerate fully nonlinear operators." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 75. http://dx.doi.org/10.1051/cocv/2018070.
Full textMontanari, Annamaria, and Ermanno Lanconelli. "Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems." Journal of Differential Equations 202, no. 2 (August 2004): 306–31. http://dx.doi.org/10.1016/j.jde.2004.03.017.
Full textKim, Yong-Cheol, and Ki-Ahm Lee. "Regularity results for fully nonlinear parabolic integro-differential operators." Mathematische Annalen 357, no. 4 (June 27, 2013): 1541–76. http://dx.doi.org/10.1007/s00208-013-0948-8.
Full textDemengel, Françoise. "Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators." Discrete & Continuous Dynamical Systems 41, no. 7 (2021): 3465. http://dx.doi.org/10.3934/dcds.2021004.
Full textGoffi, Alessandro, and Francesco Pediconi. "A Note on the Strong Maximum Principle for Fully Nonlinear Equations on Riemannian Manifolds." Journal of Geometric Analysis 31, no. 8 (February 16, 2021): 8641–65. http://dx.doi.org/10.1007/s12220-021-00607-2.
Full textJUNGES MIOTTO, T. "THE ALEKSANDROV–BAKELMAN–PUCCI ESTIMATES FOR SINGULAR FULLY NONLINEAR OPERATORS." Communications in Contemporary Mathematics 12, no. 04 (August 2010): 607–27. http://dx.doi.org/10.1142/s0219199710003956.
Full textFelmer, Patricio, and Darío Valdebenito. "Eigenvalues for radially symmetric fully nonlinear singular or degenerate operators." Nonlinear Analysis: Theory, Methods & Applications 75, no. 18 (December 2012): 6524–40. http://dx.doi.org/10.1016/j.na.2012.07.029.
Full textBardi, Martino, and Annalisa Cesaroni. "Liouville properties and critical value of fully nonlinear elliptic operators." Journal of Differential Equations 261, no. 7 (October 2016): 3775–99. http://dx.doi.org/10.1016/j.jde.2016.06.006.
Full textTrudinger, Neil S. "Hölder gradient estimates for fully nonlinear elliptic equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 108, no. 1-2 (1988): 57–65. http://dx.doi.org/10.1017/s0308210500026512.
Full textBirindelli, Isabeau, and Françoise Demengel. "Comparison principle and Liouville type results for singular fully nonlinear operators." Annales de la faculté des sciences de Toulouse Mathématiques 13, no. 2 (2004): 261–87. http://dx.doi.org/10.5802/afst.1070.
Full textBae, Jongchun. "Regularity for Fully Nonlinear Equations Driven by Spatial-Inhomogeneous Nonlocal Operators." Potential Analysis 43, no. 4 (July 4, 2015): 611–24. http://dx.doi.org/10.1007/s11118-015-9488-z.
Full textKim, Soojung, Yong-Cheol Kim, and Ki-Ahm Lee. "Regularity for Fully Nonlinear Integro-differential Operators with Regularly Varying Kernels." Potential Analysis 44, no. 4 (January 15, 2016): 673–705. http://dx.doi.org/10.1007/s11118-015-9525-y.
Full textQuaas, Alexander, and Boyan Sirakov. "Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators." Advances in Mathematics 218, no. 1 (May 2008): 105–35. http://dx.doi.org/10.1016/j.aim.2007.12.002.
Full textDávila, Gonzalo, Patricio Felmer, and Alexander Quaas. "Harnack inequality for singular fully nonlinear operators and some existence results." Calculus of Variations and Partial Differential Equations 39, no. 3-4 (July 22, 2010): 557–78. http://dx.doi.org/10.1007/s00526-010-0325-3.
Full textda Silva, João Vítor, and Hernán Vivas. "The obstacle problem for a class of degenerate fully nonlinear operators." Revista Matemática Iberoamericana 37, no. 5 (January 21, 2021): 1991–2020. http://dx.doi.org/10.4171/rmi/1256.
Full textMukhamedov, Farrukh, Mansoor Saburov, and Izzat Qaralleh. "Onξ(s)-Quadratic Stochastic Operators on Two-Dimensional Simplex and Their Behavior." Abstract and Applied Analysis 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/942038.
Full textBirindelli, Isabeau, and Françoise Demengel. "Existence and Regularity Results for Fully Nonlinear Operators on the Model of the Pseudo Pucci’s Operators." Journal of Elliptic and Parabolic Equations 2, no. 1-2 (April 2016): 171–87. http://dx.doi.org/10.1007/bf03377400.
Full textBlanc, Pablo. "A lower bound for the principal eigenvalue of fully nonlinear elliptic operators." Communications on Pure & Applied Analysis 19, no. 7 (2020): 3613–23. http://dx.doi.org/10.3934/cpaa.2020158.
Full textKim, Minhyun, and Ki-Ahm Lee. "Regularity for fully nonlinear integro-differential operators with kernels of variable orders." Nonlinear Analysis 193 (April 2020): 111312. http://dx.doi.org/10.1016/j.na.2018.07.009.
Full textKim, Yong-Cheol, and Ki-Ahm Lee. "Regularity results for fully nonlinear integro-differential operators with nonsymmetric positive kernels." Manuscripta Mathematica 139, no. 3-4 (December 7, 2011): 291–319. http://dx.doi.org/10.1007/s00229-011-0516-z.
Full textBirindelli, I., and F. Demengel. "Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators." Journal of Differential Equations 249, no. 5 (September 2010): 1089–110. http://dx.doi.org/10.1016/j.jde.2010.03.015.
Full textQuaas, Alexander, and Boyan Sirakov. "On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators." Comptes Rendus Mathematique 342, no. 2 (January 2006): 115–18. http://dx.doi.org/10.1016/j.crma.2005.11.003.
Full textBirindelli, I., and F. Demengel. "Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains." Journal of Mathematical Analysis and Applications 352, no. 2 (April 2009): 822–35. http://dx.doi.org/10.1016/j.jmaa.2008.11.012.
Full textEsteban, Maria J., Patricio L. Felmer, and Alexander Quaas. "Superlinear elliptic equation for fully nonlinear operators without growth restrictions for the data." Proceedings of the Edinburgh Mathematical Society 53, no. 1 (January 12, 2010): 125–41. http://dx.doi.org/10.1017/s0013091507001393.
Full textCHARRO, FERNANDO, and IRENEO PERAL. "ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR EQUATIONS: COMPARISON, EXISTENCE AND UNIQUENESS." Communications in Contemporary Mathematics 11, no. 01 (February 2009): 131–64. http://dx.doi.org/10.1142/s0219199709003296.
Full textFerrari, Fausto. "An application of the theorem on Sums to viscosity solutions of degenerate fully nonlinear equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 2 (January 26, 2019): 975–92. http://dx.doi.org/10.1017/prm.2018.147.
Full textHoltby, Derek W. "HIGHER-ORDER ESTIMATES FOR FULLY NONLINEAR DIFFERENCE EQUATIONS. II." Proceedings of the Edinburgh Mathematical Society 44, no. 1 (February 2001): 87–102. http://dx.doi.org/10.1017/s0013091598000200.
Full textArgiolas, Roberto. "Single phase problem with curvature for a class of fully nonlinear elliptic operators." Ricerche di Matematica 57, no. 1 (May 15, 2008): 1–12. http://dx.doi.org/10.1007/s11587-008-0022-0.
Full textMADSEN, P. A., H. B. BINGHAM, and HUA LIU. "A new Boussinesq method for fully nonlinear waves from shallow to deep water." Journal of Fluid Mechanics 462 (July 10, 2002): 1–30. http://dx.doi.org/10.1017/s0022112002008467.
Full textIvochkina, N. M., and N. V. Filimonenkova. "G˚arding Cones and Bellman Equations in the Theory of Hessian Operators and Equations." Contemporary Mathematics. Fundamental Directions 63, no. 4 (December 15, 2017): 615–26. http://dx.doi.org/10.22363/2413-3639-2017-63-4-615-626.
Full textFAN, HONG-YI, and LI-YUN HU. "OPERATOR-SUM REPRESENTATION OF DENSITY OPERATORS AS SOLUTIONS TO MASTER EQUATIONS OBTAINED VIA THE ENTANGLED STATE APPROACH." Modern Physics Letters B 22, no. 25 (October 10, 2008): 2435–68. http://dx.doi.org/10.1142/s0217984908017072.
Full textKim, Yong-Cheol, and Ki-Ahm Lee. "Regularity Results for Fully Nonlinear Integro-Differential Operators with Nonsymmetric Positive Kernels: Subcritical Case." Potential Analysis 38, no. 2 (April 14, 2012): 433–55. http://dx.doi.org/10.1007/s11118-012-9280-2.
Full textCrasta, Graziano, and Ilaria Fragalà. "The Brunn–Minkowski inequality for the principal eigenvalue of fully nonlinear homogeneous elliptic operators." Advances in Mathematics 359 (January 2020): 106855. http://dx.doi.org/10.1016/j.aim.2019.106855.
Full textCutrì, Alessandra, and Nicoletta Tchou. "Fully nonlinear degenerate operators associated with the Heisenberg group: barrier functions and qualitative properties." Comptes Rendus Mathematique 344, no. 9 (May 2007): 559–63. http://dx.doi.org/10.1016/j.crma.2007.03.003.
Full textChen, Tao, Tong Kang, and Jun Li. "An A-ϕ Scheme for Type-II Superconductors." East Asian Journal on Applied Mathematics 7, no. 4 (November 2017): 658–78. http://dx.doi.org/10.4208/eajam.141016.300517a.
Full textAdzhemyan, L. Ts, N. V. Antonov, and T. L. Kim. "Composite operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling." Theoretical and Mathematical Physics 100, no. 3 (September 1994): 1086–99. http://dx.doi.org/10.1007/bf01018574.
Full textAmendola, M. E., L. Rossi, and A. Vitolo. "Harnack Inequalities and ABP Estimates for Nonlinear Second-Order Elliptic Equations in Unbounded Domains." Abstract and Applied Analysis 2008 (2008): 1–19. http://dx.doi.org/10.1155/2008/178534.
Full textIndrei, Emanuel, and Andreas Minne. "Nontransversal intersection of free and fixed boundaries for fully nonlinear elliptic operators in two dimensions." Analysis & PDE 9, no. 2 (March 24, 2016): 487–502. http://dx.doi.org/10.2140/apde.2016.9.487.
Full textRasetti, M. "A fully consistent Lie algebraic representation of quantum phase and number operators." Journal of Physics A: Mathematical and General 37, no. 38 (September 9, 2004): L479—L487. http://dx.doi.org/10.1088/0305-4470/37/38/l01.
Full textWang, Zhan. "Modelling nonlinear electrohydrodynamic surface waves over three-dimensional conducting fluids." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2200 (April 2017): 20160817. http://dx.doi.org/10.1098/rspa.2016.0817.
Full textAntonov, N. V., S. V. Borisenok, and V. I. Girina. "Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension 8." Theoretical and Mathematical Physics 106, no. 1 (January 1996): 75–83. http://dx.doi.org/10.1007/bf02070765.
Full textFerrari, Fausto. "Two-phase problems for a class of fully nonlinear elliptic operators: Lipschitz free boundaries are C 1,γ." American Journal of Mathematics 128, no. 3 (2006): 541–71. http://dx.doi.org/10.1353/ajm.2006.0023.
Full text