To see the other types of publications on this topic, follow the link: Functional data clustering.

Journal articles on the topic 'Functional data clustering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Functional data clustering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tarpey, Thaddeus, and Kimberly K. J. Kinateder. "Clustering Functional Data." Journal of Classification 20, no. 1 (2003): 93–114. http://dx.doi.org/10.1007/s00357-003-0007-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, Forrest, James Neill, and Haiyan Wang. "Nonparametric clustering of functional data." Statistics and Its Interface 1, no. 1 (2008): 47–62. http://dx.doi.org/10.4310/sii.2008.v1.n1.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ANTONIADIS, ANESTIS, XAVIER BROSSAT, JAIRO CUGLIARI, and JEAN-MICHEL POGGI. "CLUSTERING FUNCTIONAL DATA USING WAVELETS." International Journal of Wavelets, Multiresolution and Information Processing 11, no. 01 (2013): 1350003. http://dx.doi.org/10.1142/s0219691313500033.

Full text
Abstract:
We present two strategies for detecting patterns and clusters in high-dimensional time-dependent functional data. The use on wavelet-based similarity measures, since wavelets are well suited for identifying highly discriminant local time and scale features. The multiresolution aspect of the wavelet transform provides a time-scale decomposition of the signals allowing to visualize and to cluster the functional data into homogeneous groups. For each input function, through its empirical orthogonal wavelet transform the first strategy uses the distribution of energy across scales to generate a re
APA, Harvard, Vancouver, ISO, and other styles
4

Floriello, Davide, and Valeria Vitelli. "Sparse clustering of functional data." Journal of Multivariate Analysis 154 (February 2017): 1–18. http://dx.doi.org/10.1016/j.jmva.2016.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Joonpyo, and Hee-Seok Oh. "Pseudo-quantile functional data clustering." Journal of Multivariate Analysis 178 (July 2020): 104626. http://dx.doi.org/10.1016/j.jmva.2020.104626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacques, Julien, and Cristian Preda. "Functional data clustering: a survey." Advances in Data Analysis and Classification 8, no. 3 (2013): 231–55. http://dx.doi.org/10.1007/s11634-013-0158-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lim, Yaeji, Hee-Seok Oh, and Ying Kuen Cheung. "Multiscale Clustering for Functional Data." Journal of Classification 36, no. 2 (2019): 368–91. http://dx.doi.org/10.1007/s00357-019-09313-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Álvarez-Esteban, Pedro C., and Luis A. García-Escudero. "Robust clustering of functional directional data." Advances in Data Analysis and Classification 16, no. 1 (2021): 181–99. http://dx.doi.org/10.1007/s11634-021-00482-3.

Full text
Abstract:
AbstractA robust approach for clustering functional directional data is proposed. The proposal adapts “impartial trimming” techniques to this particular framework. Impartial trimming uses the dataset itself to tell us which appears to be the most outlying curves. A feasible algorithm is proposed for its practical implementation justified by some theoretical properties. A “warping” approach is also introduced which allows including controlled time warping in that robust clustering procedure to detect typical “templates”. The proposed methodology is illustrated in a real data analysis problem wh
APA, Harvard, Vancouver, ISO, and other styles
9

James, Gareth M., and Catherine A. Sugar. "Clustering for Sparsely Sampled Functional Data." Journal of the American Statistical Association 98, no. 462 (2003): 397–408. http://dx.doi.org/10.1198/016214503000189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ma, Ping, Wenxuan Zhong, Yang Feng, and Jun S. Liu. "Bayesian Functional Data Clustering for Temporal Microarray Data." International Journal of Plant Genomics 2008 (April 17, 2008): 1–4. http://dx.doi.org/10.1155/2008/231897.

Full text
Abstract:
We propose a Bayesian procedure to cluster temporal gene expression microarray profiles, based on a mixed-effect smoothing-spline model, and design a Gibbs sampler to sample from the desired posterior distribution. Our method can determine the cluster number automatically based on the Bayesian information criterion, and handle missing data easily. When applied to a microarray dataset on the budding yeast, our clustering algorithm provides biologically meaningful gene clusters according to a functional enrichment analysis.
APA, Harvard, Vancouver, ISO, and other styles
11

Schmutz, Amandine, Julien Jacques, Charles Bouveyron, Laurence Chèze, and Pauline Martin. "Clustering multivariate functional data in group-specific functional subspaces." Computational Statistics 35, no. 3 (2020): 1101–31. http://dx.doi.org/10.1007/s00180-020-00958-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bensmail, Halima, Buddana Aruna, O. John Semmes, and Abdelali Haoudi. "Functional Clustering Algorithm for High-Dimensional Proteomics Data." Journal of Biomedicine and Biotechnology 2005, no. 2 (2005): 80–86. http://dx.doi.org/10.1155/jbb.2005.80.

Full text
Abstract:
Clustering proteomics data is a challenging problem for any traditional clustering algorithm. Usually, the number of samples is largely smaller than the number of protein peaks. The use of a clustering algorithm which does not take into consideration the number of features of variables (here the number of peaks) is needed. An innovative hierarchical clustering algorithm may be a good approach. We propose here a new dissimilarity measure for the hierarchical clustering combined with a functional data analysis. We present a specific application of functional data analysis (FDA) to a high-through
APA, Harvard, Vancouver, ISO, and other styles
13

Park, Juhyun, and Jeongyoun Ahn. "Clustering multivariate functional data with phase variation." Biometrics 73, no. 1 (2016): 324–33. http://dx.doi.org/10.1111/biom.12546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Giraldo, R., P. Delicado, and J. Mateu. "Hierarchical clustering of spatially correlated functional data." Statistica Neerlandica 66, no. 4 (2012): 403–21. http://dx.doi.org/10.1111/j.1467-9574.2012.00522.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ben Slimen, Yosra, Sylvain Allio, and Julien Jacques. "Model-based co-clustering for functional data." Neurocomputing 291 (May 2018): 97–108. http://dx.doi.org/10.1016/j.neucom.2018.02.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yassouridis, Christina, and Friedrich Leisch. "Benchmarking different clustering algorithms on functional data." Advances in Data Analysis and Classification 11, no. 3 (2016): 467–92. http://dx.doi.org/10.1007/s11634-016-0261-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jacques, Julien, and Cristian Preda. "Model-based clustering for multivariate functional data." Computational Statistics & Data Analysis 71 (March 2014): 92–106. http://dx.doi.org/10.1016/j.csda.2012.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Delaigle, A., P. Hall, and N. Bathia. "Componentwise classification and clustering of functional data." Biometrika 99, no. 2 (2012): 299–313. http://dx.doi.org/10.1093/biomet/ass003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dou, Xiaoling, Shingo Shirahata, and Hiroki Sugimoto. "Functional clustering of mouse ultrasonic vocalization data." PLOS ONE 13, no. 5 (2018): e0196834. http://dx.doi.org/10.1371/journal.pone.0196834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Buerki, M., K. O. Lovblad, H. Oswald, et al. "Multiresolution fuzzy clustering of functional MRI data." Neuroradiology 45, no. 10 (2003): 691–99. http://dx.doi.org/10.1007/s00234-003-1026-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hofmans, Joeri, Tim Vantilborgh, and Omar N. Solinger. "k-Centres Functional Clustering." Organizational Research Methods 21, no. 4 (2017): 905–30. http://dx.doi.org/10.1177/1094428117725793.

Full text
Abstract:
In the present paper, we introduce k-centres functional clustering ( k-centres FC), a person-centered method that clusters people with similar patterns of complex, highly nonlinear change over time. We review fundamentals of the methodology and argue how it addresses some of the limitations of the traditional approaches to modeling repeated measures data. The usefulness of k-centres FC is demonstrated by applying the method to weekly measured commitment data from 109 participants who reported psychological contract breach events. The k-centres FC analysis shows two substantively meaningful clu
APA, Harvard, Vancouver, ISO, and other styles
22

Nguyen, XuanLong, and Alan E. Gelfand. "The Dirichlet labeling process for clustering functional data." Statistica Sinica 21, no. 3 (2011): 1249–89. http://dx.doi.org/10.5705/ss.2008.285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Golovkine, Steven, Nicolas Klutchnikoff, and Valentin Patilea. "Clustering multivariate functional data using unsupervised binary trees." Computational Statistics & Data Analysis 168 (April 2022): 107376. http://dx.doi.org/10.1016/j.csda.2021.107376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lee, Miae, Johan Lim, Chungun Park, and Kyeong Eun Lee. "Functional clustering for clubfoot data: A case study." Journal of the Korean Data and Information Science Society 25, no. 5 (2014): 1069–77. http://dx.doi.org/10.7465/jkdi.2014.25.5.1069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chiou, Jeng-Min, and Pai-Ling Li. "Functional clustering and identifying substructures of longitudinal data." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, no. 4 (2007): 679–99. http://dx.doi.org/10.1111/j.1467-9868.2007.00605.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Salli, E., H. J. Aronen, S. Savolainen, A. Korvenoja, and A. Visa. "Contextual clustering for analysis of functional MRI data." IEEE Transactions on Medical Imaging 20, no. 5 (2001): 403–14. http://dx.doi.org/10.1109/42.925293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Delaigle, Aurore, Peter Hall, and Tung Pham. "Clustering functional data into groups by using projections." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81, no. 2 (2019): 271–304. http://dx.doi.org/10.1111/rssb.12310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Haggarty, R. A., C. A. Miller, and E. M. Scott. "Spatially weighted functional clustering of river network data." Journal of the Royal Statistical Society: Series C (Applied Statistics) 64, no. 3 (2014): 491–506. http://dx.doi.org/10.1111/rssc.12082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ciollaro, Mattia, Christopher R. Genovese, and Daren Wang. "Nonparametric clustering of functional data using pseudo-densities." Electronic Journal of Statistics 10, no. 2 (2016): 2922–72. http://dx.doi.org/10.1214/16-ejs1198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zeng, Pengcheng, Jian Qing Shi, and Won-Seok Kim. "Simultaneous Registration and Clustering for Multidimensional Functional Data." Journal of Computational and Graphical Statistics 28, no. 4 (2019): 943–53. http://dx.doi.org/10.1080/10618600.2019.1607744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

emeriau, s., l. pierot, j. b. poline, and e. bittar. "A new functional characterization for fMRI data clustering." NeuroImage 47 (July 2009): S80. http://dx.doi.org/10.1016/s1053-8119(09)70556-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Secchi, Piercesare, Simone Vantini, and Valeria Vitelli. "A clustering algorithm for spatially dependent functional data." Procedia Environmental Sciences 7 (2011): 176–81. http://dx.doi.org/10.1016/j.proenv.2011.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Romano, Elvira, Antonio Balzanella, and Rosanna Verde. "Spatial variability clustering for spatially dependent functional data." Statistics and Computing 27, no. 3 (2016): 645–58. http://dx.doi.org/10.1007/s11222-016-9645-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Slaets, Leen, Gerda Claeskens, and Mia Hubert. "Phase and amplitude-based clustering for functional data." Computational Statistics & Data Analysis 56, no. 7 (2012): 2360–74. http://dx.doi.org/10.1016/j.csda.2012.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Suarez, Adam Justin, and Subhashis Ghosal. "Bayesian Clustering of Functional Data Using Local Features." Bayesian Analysis 11, no. 1 (2016): 71–98. http://dx.doi.org/10.1214/14-ba925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Jen-Hao, Yen-Chang Chang, and Wen-Liang Hung. "A self-organizing clustering algorithm for functional data." Communications in Statistics - Simulation and Computation 49, no. 5 (2018): 1237–63. http://dx.doi.org/10.1080/03610918.2018.1494280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Secchi, Piercesare, Simone Vantini, and Valeria Vitelli. "Bagging Voronoi classifiers for clustering spatial functional data." International Journal of Applied Earth Observation and Geoinformation 22 (June 2013): 53–64. http://dx.doi.org/10.1016/j.jag.2012.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Xueli, and Mark C. K. Yang. "Simultaneous curve registration and clustering for functional data." Computational Statistics & Data Analysis 53, no. 4 (2009): 1361–76. http://dx.doi.org/10.1016/j.csda.2008.11.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zambom, Adriano Zanin, Julian A. A. Collazos, and Ronaldo Dias. "Functional data clustering via hypothesis testing k-means." Computational Statistics 34, no. 2 (2018): 527–49. http://dx.doi.org/10.1007/s00180-018-0808-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Haggarty, R. A., C. A. Miller, E. M. Scott, F. Wyllie, and M. Smith. "Functional clustering of water quality data in Scotland." Environmetrics 23, no. 8 (2012): 685–95. http://dx.doi.org/10.1002/env.2185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, TianTian, KeChao Wang, XiaoHong Su, and Lin Liu. "Data Mining in Programs." International Journal of Data Warehousing and Mining 16, no. 2 (2020): 48–63. http://dx.doi.org/10.4018/ijdwm.2020040104.

Full text
Abstract:
Software exists in various control systems, such as security-critical systems and so on. Existing program clustering methods are limited in identifying functional equivalent programs with different syntactic representations. To solve this problem, firstly, a clustering method based on structured metric vectors was proposed to quickly identify structurally similar programs from a large number of existing programs. Next, a clustering method based on similar execution value sequences was proposed, to accurately identify the functional equivalent programs with code variations. This approach has be
APA, Harvard, Vancouver, ISO, and other styles
42

Song, Joon Jin, Ho-Jin Lee, Jeffrey S. Morris, and Sanghoon Kang. "Clustering of time-course gene expression data using functional data analysis." Computational Biology and Chemistry 31, no. 4 (2007): 265–74. http://dx.doi.org/10.1016/j.compbiolchem.2007.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Baragilly, Mohammed, Hend Gabr, and Brian H. Willis. "Clustering functional data using forward search based on functional spatial ranks with medical applications." Statistical Methods in Medical Research 31, no. 1 (2021): 47–61. http://dx.doi.org/10.1177/09622802211002865.

Full text
Abstract:
Cluster analysis of functional data is finding increasing application in the field of medical research and statistics. Here we introduce a functional version of the forward search methodology for the purpose of functional data clustering. The proposed forward search algorithm is based on the functional spatial ranks and is a data-driven non-parametric method. It does not require any preprocessing functional data steps, nor does it require any dimension reduction before clustering. The Forward Search Based on Functional Spatial Rank (FSFSR) algorithm identifies the number of clusters in the cur
APA, Harvard, Vancouver, ISO, and other styles
44

Emeriau, S., F. Blanchard, J. B. Poline, L. Pierot, and E. Bittar. "Unsupervised spatio-functional clustering of fMRI data based on new functional feature." International Journal of Signal and Imaging Systems Engineering 5, no. 2 (2012): 93. http://dx.doi.org/10.1504/ijsise.2012.047781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lim, Yaeji, Ying Kuen Cheung, and Hee-Seok Oh. "A generalization of functional clustering for discrete multivariate longitudinal data." Statistical Methods in Medical Research 29, no. 11 (2020): 3205–17. http://dx.doi.org/10.1177/0962280220921912.

Full text
Abstract:
This paper presents a new model-based generalized functional clustering method for discrete longitudinal data, such as multivariate binomial and Poisson distributed data. For this purpose, we propose a multivariate functional principal component analysis (MFPCA)-based clustering procedure for a latent multivariate Gaussian process instead of the original functional data directly. The main contribution of this study is two-fold: modeling of discrete longitudinal data with the latent multivariate Gaussian process and developing of a clustering algorithm based on MFPCA coupled with the latent mul
APA, Harvard, Vancouver, ISO, and other styles
46

Matsui, Hidetoshi, Toshihiro Misumi, Takaaki Yokomizo, and Sadanori Konishi. "Clustering for Functional Data via Nonlinear Mixed Effects Models." Japanese Journal of Applied Statistics 45, no. 1-2 (2016): 25–45. http://dx.doi.org/10.5023/jappstat.45.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yoon, Sanghoo, and Youngjean Choi. "Functional clustering for electricity demand data: A case study." Journal of the Korean Data and Information Science Society 26, no. 4 (2015): 885–94. http://dx.doi.org/10.7465/jkdi.2015.26.4.885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wei, Ziwen, and Lynn Kuo. "Nonparametric Bayesian functional clustering for time-course microarray data." Statistics and Its Interface 7, no. 4 (2014): 543–57. http://dx.doi.org/10.4310/sii.2014.v7.n4.a10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Harada, I., and T. Adachi. "New clustering approach to chip floorplan using functional data." Electronics Letters 23, no. 17 (1987): 900. http://dx.doi.org/10.1049/el:19870636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Spellman, Paul, Audrey Gasch, Michael Eisen, Camilla Kao, Patrick Brown, and David Botstein. "Functional clustering of genes using microarray gene expression data." Nature Genetics 23, S3 (1999): 75. http://dx.doi.org/10.1038/14406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!