Academic literature on the topic 'Functional Noble Metal Nanoparticle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functional Noble Metal Nanoparticle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Functional Noble Metal Nanoparticle"

1

Weerawardene, K. L. Dimuthu M. "Optical and luminescence properties of noble metal nanoparticles." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38189.

Full text
Abstract:
Doctor of Philosophy<br>Department of Chemistry<br>Christine M. Aikens<br>The remarkable optical and luminescence properties of noble metal nanoparticles (with diameters < 2 nm) attract researchers due to potential applications in biomedicine, photocatalysis, and optoelectronics. Extensive experimental investigations on luminescence properties of thiolate-protected gold and silver nanoclusters during the past decade have failed to unravel their exact photoluminescence mechanism. Herein, density functional and time-dependent density functional theory (DFT and TDDFT) calculations are performed t
APA, Harvard, Vancouver, ISO, and other styles
2

Guidez, Emilie Brigitte. "Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17314.

Full text
Abstract:
Doctor of Philosophy<br>Department of Chemistry<br>Christine M. Aikens<br>Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculat
APA, Harvard, Vancouver, ISO, and other styles
3

Karimova, Natalia Vladimirovna. "Theoretical study of the optical properties of the noble metal nanoparticles: CD and MCD spectroscopy." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38177.

Full text
Abstract:
Doctor of Philosophy<br>Department of Chemistry<br>Christine M. Aikens<br>Gold and silver particles with dimensions less than a nanometer possess unique characteristics and properties that are different from the properties of the bulk. They demonstrate a non–zero HOMO–LUMO gap that can reach up to 3.0 eV. These differences arise from size quantization effects in the metal core due to the small number of atoms. These nanoparticles have attracted great interest for decades both in fundamental and applied research. Small gold clusters protected by various types of ligands are of interest because
APA, Harvard, Vancouver, ISO, and other styles
4

Herrmann, Anne-Kristin. "Preparation, Processing and Characterization of Noble Metal Nanoparticle-based Aerogels." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149672.

Full text
Abstract:
New challenges in nanotechnology arise in the assembly of nanoobjects into three-dimensional superstructures, which may carry synergetic properties and open up new application fields. Within this new class of materials nanostructured, porous functional metals are of great interest since they combine high surface area, gas permeability, electrical conductivity, plasmonic behavior and size-enhanced catalytic reactivity. Even though a large variety of preparation pathways for the fabrication of porous noble metals has already been established, several limitations are still to be addressed by res
APA, Harvard, Vancouver, ISO, and other styles
5

Gill, Arran Michael. "The extrusion of noble metal nanoparticle catalysts for sustainable oxidation reactions." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/422157/.

Full text
Abstract:
Through employing a combination of complimentary structural, spectroscopic and high-resolution microscopy techniques, the superior properties of a [PtCl4]2- precursor to yield well-defined, isolated nanoparticles (predominantly 2-3 nm) upon microporous framework architectures, have been established. These are prepared via a one-step, in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. The catalytic activity of these materials can be intrinsically linked to the degree of nanoparticle formation. The [PtCl4]2- precursor bestows a
APA, Harvard, Vancouver, ISO, and other styles
6

Crites, Charles-Oneil. "Investigating the Interactions between Free Radicals and Supported Noble Metal Nanoparticles in Oxidation Reactions." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33404.

Full text
Abstract:
This thesis studies the interaction between free radical species and supported noble metal nanoparticles (silver and gold) in the context of oxidation reactions. The peroxidation of cumene is the first reaction to be discussed and the difference in peroxidation product distribution using silver nanoparticles (AgNP) versus gold nanoparticles (AuNP) is examined. Specifically, cumyl alcohol is obtained as the major product obtained when using supported AuNP, whereas cumene hydroperoxide is favoured for AgNP. Such variations in product distribution are partially explained by the differences in the
APA, Harvard, Vancouver, ISO, and other styles
7

Near, Rachel Deanne. "Theoretical and experimental investigation of the plasmonic properties of noble metal nanoparticles." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52181.

Full text
Abstract:
Noble metal nanoparticles are of great interest due to their tunable optical and radiative properties. The specific wavelength of light at which the localized surface plasmon resonance occurs is dependent upon the shape, size and composition of the particle as well as the dielectric constant of the host medium. Thus, the optical properties of noble metal nanoparticles can be systematically tuned by altering these specific parameters. The purpose of this thesis is to investigate some of these properties related to metallic nanoparticles. The first several chapters focus on theoretical mode
APA, Harvard, Vancouver, ISO, and other styles
8

Bruzas, Ian R. "Biocompatible noble metal nanoparticle substrates for bioanalytical and biophysical analysis of protein and lipids." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1553250462519941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

JOUVE, ANDREA. "VALORISATION OF BIOMASS-DERIVED MOLECULES BY NOBLE METAL CATALYSTS." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/710533.

Full text
Abstract:
Valorisation of different biomass derived molecules was successfully approached and studied in this PhD project. The focus of the thesis was addressed to the catalysts preparation, passing through an accurate catalytic designed, to be then tested in academic and industrially appealing reactions. This approach led to the synthesis of different but equally interesting catalytic systems for the valorisation of substrates derived from the first and second generation of biomass feedstock. An extended study, at first, was conducted on the oxidation of glycerol (1st generation of biomass related), b
APA, Harvard, Vancouver, ISO, and other styles
10

Sinha, Roy Rajarshi. "Ab initio simulation of optical properties of noble-metal clusters." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0017/document.

Full text
Abstract:
L'intérêt de la recherche fondamentale pour les morceaux nanométriques de métaux nobles est principalement dû à la résonance localisée des plasmons de surface (LSPR) dans l'absorption optique. Différents aspects, liés à la compréhension théorique de la LSPR dans le cas de clusters de métaux nobles de taille dite intermédiaire, sont étudiés dans ce manuscrit. Afin d'avoir une vision plus large nous utilisons deux approches : l'approche électromagnétique classique et le formalisme ab initio en temps réel de la théorie de la fonctionnelle de la densité dépendant du temps (RT-TDDFT). Une comparais
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!