Academic literature on the topic 'Functionalized graphene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functionalized graphene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Functionalized graphene"

1

Zarafu, Irina, Ioana Turcu, Daniela Culiță, et al. "Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines." Materials 11, no. 9 (2018): 1704. http://dx.doi.org/10.3390/ma11091704.

Full text
Abstract:
(1) Background: Graphene oxide is a new carbon-based material that contains functional groups (carboxyl, hydroxyl, carbonyl, epoxy) and therefore can be easily functionalized with organic compounds of interest, yielding hybrid materials with important properties and applications. (2) Methods: Graphene oxide has been obtained by a modified Hummers method and activated by thionyl chloride in order to be covalently functionalized with amines. Thus obtained hybrid materials were characterized by infrared and Raman spectroscopy, elemental analysis and scanning electron microscopy and then tested for their antimicrobial and anti-biofilm activity. (3) Results: Eight amines of interest were used to functionalize grapheme oxide and the materials thus obtained were tested against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial strainsin plankonic and biofilm growth state. Both amines, as well as the functionalized materials, exhibited anti-microbial features. Three to five functionalized graphene oxide materials exhibited improved inhibitory activity against planktonic strains as compared with the respective amines. In exchange, the amines alone proved generally more efficient against biofilm-embedded cells. (4) Conclusions: Such hybrid materials may have a wide range of potential use in biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Tene, Talia, Stefano Bellucci, Marco Guevara, et al. "Adsorption of Mercury on Oxidized Graphenes." Nanomaterials 12, no. 17 (2022): 3025. http://dx.doi.org/10.3390/nano12173025.

Full text
Abstract:
Graphene oxide (GO) and its reduced form, reduced graphene oxide (rGO), are among the most predominant graphene derivatives because their unique properties make them efficient adsorbent nanomaterials for water treatment. Although extra-functionalized GO and rGO are customarily employed for the removal of pollutants from aqueous solutions, the adsorption of heavy metals on non-extra-functionalized oxidized graphenes has not been thoroughly studied. Herein, the adsorption of mercury(II) (Hg(II)) on eco-friendly-prepared oxidized graphenes is reported. The work covers the preparation of GO and rGO as well as their characterization. In a further stage, the description of the adsorption mechanism is developed in terms of the kinetics, the associated isotherms, and the thermodynamics of the process. The interaction between Hg(II) and different positions of the oxidized graphene surface is explored by DFT calculations. The study outcomes particularly demonstrate that pristine rGO has better adsorbent properties compared to pristine GO and even other extra-functionalized ones.
APA, Harvard, Vancouver, ISO, and other styles
3

Muraru, Sebastian, Cosmin G. Samoila, Emil I. Slusanschi, Jorge S. Burns, and Mariana Ionita. "Molecular Dynamics Simulations of DNA Adsorption on Graphene Oxide and Reduced Graphene Oxide-PEG-NH2 in the Presence of Mg2+ and Cl− ions." Coatings 10, no. 3 (2020): 289. http://dx.doi.org/10.3390/coatings10030289.

Full text
Abstract:
Graphene and its functionalised derivatives are transforming the development of biosensors that are capable of detecting nucleic acid hybridization. Using a Molecular Dynamics (MD) approach, we explored single-stranded or double-stranded deoxyribose nucleic acid (ssDNA or dsDNA) adsorption on two graphenic species: graphene oxide (GO) and reduced graphene oxide functionalized with aminated polyethylene glycol (rGO-PEG-NH2). Innovatively, we included chloride (Cl−) and magnesium (Mg2+) ions that influenced both the ssDNA and dsDNA adsorption on GO and rGO-PEG-NH2 surfaces. Unlike Cl−, divalent Mg2+ ions formed bridges between the GO surface and DNA molecules, promoting adsorption through electrostatic interactions. For rGO-PEG-NH2, the Mg2+ ions were repulsed from the graphenic surface. The subsequent ssDNA adsorption, mainly influenced by electrostatic forces and hydrogen bonds, could be supported by π–π stacking interactions that were absent in the case of dsDNA. We provide a novel insight for guiding biosensor development.
APA, Harvard, Vancouver, ISO, and other styles
4

Song, Min, Juan Xu, and Changzi Wu. "The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets." Journal of Nanotechnology 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/329318.

Full text
Abstract:
In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH), thiol-functionalized graphene (graphene-SH), and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction ofAuCl4 -ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM) and ultraviolet-visible (UV-Vis) spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Rajeev Kumar, Manisha Malviya, Chandrabhan Verma, Neeraj K. Gupta, and M. A. Quraishi. "Pyridine-based functionalized graphene oxides as a new class of corrosion inhibitors for mild steel: an experimental and DFT approach." RSC Advances 7, no. 62 (2017): 39063–74. http://dx.doi.org/10.1039/c7ra05825j.

Full text
Abstract:
Two functionalized graphene oxides, diazo pyridine functionalized graphene oxide and diamino pyridine functionalized graphene oxide, were synthesised and evaluated as corrosion inhibitors on mild steel in 1 M hydrochloric acid.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, D. S., V. Dhand, K. Y. Rhee, and S. J. Park. "Surface Treatment And Modification Of Graphene Using Organosilane And Its Thermal Stability." Archives of Metallurgy and Materials 60, no. 2 (2015): 1387–91. http://dx.doi.org/10.1515/amm-2015-0137.

Full text
Abstract:
Abstract In this study, graphene was functionalized via acid oxidation in the presence of a mixture of concentrated sulfuric acid and nitric acid. The oxidized graphene was silanized using the coupling agent, 3-aminopropyltriethoxsilane, resulting in functionalized graphene. The oxidized graphene and functionalized graphene were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, High-resolution micro Raman spectroscopy, thermogravimetric analysis, and atomic force microscopy to confirm the presence of functional moieties on the graphene surface. Thermal studies also demonstrate that the functionalized material is thermally stable up to higher temperatures.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, C. H., X. P. Zhang, and L. Zhang. "RGD peptide functionalized graphene oxide: a bioactive surface for cell-material interactions." Digest Journal of Nanomaterials and Biostructures 17, no. 3 (2022): 989–97. http://dx.doi.org/10.15251/djnb.2022.173.989.

Full text
Abstract:
Recently, functionalized graphene-based nanomaterials have gained tremendous attention in biomedical field owing to their biocompatibility, surface functionalizability and their unique mechanical, electronic, and optical properties. Herein, we report a facile one step modification of graphene oxide by RGD peptide, which is known to improve the tissue– material contact by highly specific binding to cellular membrane receptors known as integrins. A detailed structural and morphological characterization of the obtained RGD functionalized graphene oxide (GO-RGD) was performed. The synthesized bioactive composite was used to prepare RGD-GO films by a vacuum filtration method. Additionally, mouse osteoblastic cell (MC3T3-E1) functions including cell attachment, adhesion, proliferation, and differentiation were investigated on GO-RGD films. The results indicated that MC3T3-E1 cell functions were significantly enhanced on GO-RGD films comparing with GO films without functionalization. This study not only demonstrates a facile approach to functionalize graphene oxide with bioactive peptides, but also provides a potential biomaterial for bone repair by improving osteoblastic cell functions.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Duoli, Chaoliang Gan, Xiaoqiang Fan, et al. "Improving the Dynamic Mechanical Properties of XNBR Using ILs/KH550-Functionalized Multilayer Graphene." Materials 12, no. 17 (2019): 2800. http://dx.doi.org/10.3390/ma12172800.

Full text
Abstract:
Graphene has been considered an ideal nanoscale reinforced phase for preparing high-performance composites, but the poor compatibility and weak interfacial interaction with the matrix have limited its application. Here a highly effective and environmentally friendly method for the functionalization of graphene is proposed through an interaction between as-exfoliated graphene and (3-aminopropyl) triethoxysilane (KH550), in which 1-butylsulfonate-3-methylimidazolium bisulfate (BSO3HMIm)(HSO4) ionic-liquids-modified graphene was prepared via an electrochemical exfoliation of graphite in (BSO3HMIm)(HSO4) solution, then (BSO3HMIm)(HSO4)-modified graphene as a precursor was reacted with amine groups of KH550 for obtaining (BSO3HMIm)(HSO4)/KH550-functionalized graphene. The final products as filler into carboxylated acrylonitrile‒butadiene rubber (XNBR) improve the dynamic mechanical properties. The improvement in the dynamic mechanical properties of the nanocomposite mainly depends on high interfacial interaction and graphene’s performance characteristics, as well as a good dispersion between functionalized graphene and the XNBR matrix.
APA, Harvard, Vancouver, ISO, and other styles
9

Abbas, S. S., and T. McNally. "Composites of Cysteamine Functionalised Graphene Oxide and Polypropylene." International Polymer Processing 36, no. 3 (2021): 297–313. http://dx.doi.org/10.1515/ipp-2020-4079.

Full text
Abstract:
Abstract Cysteamine functionalised reduced graphene oxide (rGO) was grafted to polypropylene-graft-maleic anhydride (PP-g-MA) and subsequently melt blended with PP. The covalent bridging of rGO to PP-g-MA via the cysteamine molecule and co-crystallization are routes to promoting interfacial interactions between rGO and the PP matrix. A rheological percolation threshold was achieved for a nanofiller loading between 3 wt% and 5 wt%, but none detected for the composites prepared with un-functionalized rGO. At low loadings (0.1 wt%), functionalized rGO is well dispersed in the PP matrix, an interconnecting filler-filler, polymer-filler and polymer-polymer network is formed, resulting in increased tensile toughness (1 500%) and elongation at break (40%) relative to neat PP. Irrespective of whether the rGO was functionalised or not, it had a significant effect on the crystallization behavior of PP, inducing heterogeneous nucleation, increasing the crystallisation temperature (Tm) of PP by up to 10°C and decreasing the crystalline content (Xc) by ∼30% for the highest (5 wt%) filler loading. The growth of the monoclinic a-phase of PP is preferred on addition of functionalised rGO and b crystal growth suppressed.
APA, Harvard, Vancouver, ISO, and other styles
10

Strankowski, Michał, Damian Włodarczyk, Łukasz Piszczyk, and Justyna Strankowska. "Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies." Journal of Spectroscopy 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7520741.

Full text
Abstract:
Recently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO), is prepared by the oxidation of graphite. Though removal of the oxide groups can create vacancies and structural defects, reduced graphene oxide (rGO) is used in composites as effective filler similar to GO. Authors developed a new polyurethane nanocomposite using a derivative of grapheme, thermally reduced graphene oxide (rGO), to modify the matrix of polyurethane elastomers, by rGO.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography