Academic literature on the topic 'Functions of bounded variation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functions of bounded variation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Functions of bounded variation"
., Jyoti. "Functions of Bounded Variation." Journal of Advances and Scholarly Researches in Allied Education 15, no. 4 (June 1, 2018): 250–52. http://dx.doi.org/10.29070/15/57855.
Full textCastillo, Mariela, Sergio Rivas, María Sanoja, and Iván Zea. "Functions of Boundedκφ-Variation in the Sense of Riesz-Korenblum." Journal of Function Spaces and Applications 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/718507.
Full textLipcsey, Z., I. M. Esuabana, J. A. Ugboh, and I. O. Isaac. "Integral Representation of Functions of Bounded Variation." Journal of Mathematics 2019 (July 8, 2019): 1–11. http://dx.doi.org/10.1155/2019/1065946.
Full textJerrard, R. L., and H. M. Soner. "Functions of bounded higher variation." Indiana University Mathematics Journal 51, no. 3 (2002): 0. http://dx.doi.org/10.1512/iumj.2002.51.2229.
Full textAISTLEITNER, CHRISTOPH, FLORIAN PAUSINGER, ANNE MARIE SVANE, and ROBERT F. TICHY. "On functions of bounded variation." Mathematical Proceedings of the Cambridge Philosophical Society 162, no. 3 (July 26, 2016): 405–18. http://dx.doi.org/10.1017/s0305004116000633.
Full textAye, Khaing Khaing, and Peng Yee Lee. "The dual of the space of functions of bounded variation." Mathematica Bohemica 131, no. 1 (2006): 1–9. http://dx.doi.org/10.21136/mb.2006.134078.
Full textConti, Sergio, Matteo Focardi, and Flaviana Iurlano. "Which special functions of bounded deformation have bounded variation?" Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148, no. 1 (October 17, 2017): 33–50. http://dx.doi.org/10.1017/s030821051700004x.
Full textCiemnoczolowski, J., and W. Orlicz. "Composing Functions of Bounded ϕ-Variation." Proceedings of the American Mathematical Society 96, no. 3 (March 1986): 431. http://dx.doi.org/10.2307/2046589.
Full textCianchi, Andrea, and Nicola Fusco. "Functions of Bounded Variation�and Rearrangements." Archive for Rational Mechanics and Analysis 165, no. 1 (October 1, 2002): 1–40. http://dx.doi.org/10.1007/s00205-002-0214-9.
Full textKolyada, V. I., and M. Lind. "On functions of bounded p-variation." Journal of Mathematical Analysis and Applications 356, no. 2 (August 2009): 582–604. http://dx.doi.org/10.1016/j.jmaa.2009.03.042.
Full textDissertations / Theses on the topic "Functions of bounded variation"
Lind, Martin. "Functions of bounded variation." Thesis, Karlstad University, Division for Engineering Sciences, Physics and Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-209.
Full textThe paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
Lind, Martin. "Functions of Generalized Bounded Variation." Doctoral thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-26342.
Full textBaksidestext The classical concept of the total variation of a function has been extended in several directions. Such extensions find many applications in different areas of mathematics. Consequently, the study of notions of generalized bounded variation forms an important direction in the field of mathematical analysis. This thesis is devoted to the investigation of various properties of functions of generalized bounded variation. In particular, we obtain the following results: sharp relations between spaces of generalized bounded variation and spaces of functions defined by integral smoothness conditions (e.g., Sobolev and Besov spaces); optimal properties of certain scales of function spaces of frac- tional smoothness generated by functionals of variational type; sharp embeddings within the scale of spaces of functions of bounded p-variation; results concerning bivariate functions of bounded p-variation, in particular sharp estimates of total variation in terms of the mixed Lp-modulus of continuity, and Fubini-type properties.
Don, Sebastiano. "Functions of bounded variation in Carnot-Carathéodory spaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3426813.
Full textAnalizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente differenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la decomposizione della loro derivata distribuzionale. Assumendo un'ipotesi addizionale sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discontinuità approssimata sono di salto e studiamo una formula per la parte di salto della derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di gruppi di Carnot che contiene tutti i gruppi di Heisenberg H^n con n ≥ 2. Uno strumento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo 4 dimostriamo un risultato di compattezza per succesioni (u_j) equi-limitate in spazi metrici (X, d_j) quando lo spazio X è fissato ma la metrica può variare con j. Mostriamo inoltre un'applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo 4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
Rivetti, Sabrina. "Bounded variation solutions of capillarity-type equations." Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/10161.
Full textWe investigate by different techniques, the solvability of a class of capillarity-type problems, in a bounded N-dimensional domain. Since our approach is variational, the natural context where this problem has to be settled is the space of bounded variation functions. Solutions of our equation are defined as subcritical points of the associated action functional.
We first introduce a lower and upper solution method in the space of bounded variation functions. We prove the existence of solutions in the case where the lower solution is smaller than the upper solution. A solution, bracketed by the given lower and upper solutions, is obtained as a local minimizer of the associated functional without any assumption on the boundedness of the right-hand side of the equation. In this context we also prove order stability results for the minimum and the maximum solution lying between the given lower and upper solutions. Next we develop an asymmetric version of the Poincaré inequality in the space of bounded variation functions. Several properties of the curve C are then derived and basically relying on these results, we discuss the solvability of the capillarity-type problem, assuming a suitable control on the interaction of the supremum and the infimum of the function at the right-hand side with the curve C. Non-existence and multiplicity results are investigated as well. The one-dimensional case, which sometimes presents a different behaviour, is also discussed. In particular, we provide an existence result which recovers the case of non-ordered lower and upper solutions.
XXV Ciclo
1985
Quinn, Eugene P. "On the boundedness character of third-order rational difference equations /." View online ; access limited to URI, 2006. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3225327.
Full textMENEGATTI, GIORGIO. "Sobolev classes and bounded variation functions on domains of Wiener spaces, and applications." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488305.
Full textL’argomento principale di questo lavoro sono le funzioni a variazione limitata (BV) in spazi di Wiener astratti (un argomento di analisi infinito-dimensionale). Nella prima parte di questo lavoro, presentiamo alcuni risultati noti, e introduciamo i concetti di spazi di Wiener, di classi di Sobolev su spazi di Wiener, di funzioni BV (e insiemi di perimetro finito) in spazi di Wiener, e di funzioni BV in sottoinsiemi convessi di Spazi di Wiener (seguendo la definizione in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); inoltre, introduciamo la teoria delle tracce su sottoinsiemi di uno spazio di Wiener( seguendo P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), e il concetto di convergenza di Mosco. Nella seconda parte presentiamo alcuni risultati originali. Nel capitolo 6, consideriamo un sottoinsieme O di uno spazio di Wiener che soddisfa a una condizione di regolarità, e proviamo che una funzione in W^{1,2} (O) ha traccia nulla se e solo se è il limite di una sequenza di funzioni con supporto contenuto in O. Il capitolo principale è il 7, che è dedicato all'estensione all'ambito degli spazi di Wiener di un risultato dato nella sezione 8 di (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): se O è un insieme convesso limitato con frontiera regolare in R^{d} e L è l'operatore di Laplace in O con condizione al bordo di Dirichlet nulla, allora il risolvente normalizzato di L è contrattivo nel senso L^1 rispetto al gradiente. Estendiamo questo risultato al caso di L operatore di Ornstein-Uhlenbeck in O con condizione al bordo di Dirichlet nulla, con misura gaussiana (usando i risultati del Capitolo 6): in questo caso O deve soddisfare una condizione (che chiamiamo convessità Gaussiana) che nel caso gaussiano prende il posto della convessità. Inoltre, estendiamo il risultato anche al caso di: L operatore di Laplace in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura di Lebesgue; L operatore in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura gaussiana. Nell'ultima parte del Capitolo 7, usiamo i precedenti risultati per dare una definizione alternativa di funzione BV in O (nel caso L^2(O) ). Nel Capitolo 8, sia X l'insieme delle funzioni continue in R^d su [ 0,1 ] con punti di partenza nell’origine fornito della misura indotta dal moto browniano con punto di partenza nell’origine; è uno spazio di Wiener. Per ogni A sottoinsieme di X, definiamo Ξ_A, insieme delle funzioni in X con immagine in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) viene dimostrato che, se d ≥ 2 e A è un insieme aperto in R^d che soddisfa una condizione di uniforme palla esterna, allora Ξ_A ha perimetro finito nel senso della misura gaussiana. Presentiamo una condizione più debole su A (in dimensione sufficientemente grande) tale che Ξ_A ha perimetro finito: in particolare, A può essere il complementare di un cono convesso illimitato simmetrico.
Bellavia, Mark R. "Long term behavior or the positive solutions of the non-autonomous difference equation : x [subscript] n+1 = A [subscript] n [superscript] x [subscript] n-1 [divided by] 1+x [subscript] n, n=0,1,2... /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1117.
Full textReinwand, Simon [Verfasser], Jürgen [Gutachter] Appell, Daria [Gutachter] Bugajewska, and Gianluca [Gutachter] Vinti. "Functions of Bounded Variation: Theory, Methods, Applications / Simon Reinwand ; Gutachter: Jürgen Appell, Daria Bugajewska, Gianluca Vinti." Würzburg : Universität Würzburg, 2021. http://d-nb.info/1232647632/34.
Full textCAMFIELD, CHRISTOPHER SCOTT. "Comparison of BV Norms in Weighted Euclidean Spaces and Metric Measure Spaces." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211551579.
Full textSoneji, Parth. "Lower semicontinuity and relaxation in BV of integrals with superlinear growth." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c7174516-588e-46ae-93dc-56d4a95f1e6f.
Full textBooks on the topic "Functions of bounded variation"
author, Banas Jozef 1950, and Merentes Díaz, Nelson José, author, eds. Bounded variation and around. Berlin: Walter de Gruyter GmbH & Co. KG, 2013.
Find full textZiemer, William P. Weakly differentiable functions: Sobolev spaces and functions of bounded variation. New York: Springer-Verlag, 1989.
Find full textLiflyand, Elijah. Functions of Bounded Variation and Their Fourier Transforms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04429-9.
Full textNicola, Fusco, and Pallara Diego, eds. Functions of bounded variation and free discontinuity problems. Oxford: Clarendon Press, 2000.
Find full textBraides, Andrea. Approximation of free-discontinuity problems. Berlin: Springer-Verlag, 1998.
Find full textDudley, R. M. Differentiability of six operators on nonsmooth functions and p-variation. Berlin: Springer, 1999.
Find full textCheverry, Christophe. Systèmes de lois de conservation et stabilité BV. [Paris, France]: Société mathématique de France, 1998.
Find full textSheremeta, M. Analytic functions of bounded index. Kiev, Ukraine: VNTL Publishers, 1999.
Find full textJerbashian, Armen M., and Joel E. Restrepo. Functions of Omega-Bounded Type. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49885-5.
Full textTemli͡akov, V. N. Approximation of functions with bounded mixed derivative. Providence, R.I: American Mathematical Society, 1989.
Find full textBook chapters on the topic "Functions of bounded variation"
Ziemer, William P. "Functions of Bounded Variation." In Weakly Differentiable Functions, 220–82. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1015-3_5.
Full textLaczkovich, Miklós, and Vera T. Sós. "Functions of Bounded Variation." In Real Analysis, 399–406. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2766-1_17.
Full textRana, Inder. "Functions of bounded variation." In Graduate Studies in Mathematics, 397–99. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/045/17.
Full textLeoni, Giovanni. "Functions of bounded variation." In Graduate Studies in Mathematics, 377–414. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/105/13.
Full textBraides, Andrea. "Functions of bounded variation." In Approximation of Free-Discontinuity Problems, 7–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0097346.
Full textConvertito, Gregory, and David Cruz-Uribe. "Functions of Bounded Variation." In The Stieltjes Integral, 89–136. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781351242813-3.
Full textCoclite, Giuseppe Maria. "Functions with Bounded Variation." In Scalar Conservation Laws, 59–72. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3984-4_5.
Full textGordon, Russell. "Functions of generalized bounded variation." In Graduate Studies in Mathematics, 89–105. Providence, Rhode Island: American Mathematical Society, 1994. http://dx.doi.org/10.1090/gsm/004/06.
Full textLeoni, Giovanni. "Functions of bounded pointwise variation." In Graduate Studies in Mathematics, 39–72. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/105/02.
Full textBraides, Andrea. "Special functions of bounded variation." In Approximation of Free-Discontinuity Problems, 27–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0097347.
Full textConference papers on the topic "Functions of bounded variation"
Singh, Akhilesh Kumar. "Functions of bounded variation on effect algebras." In ADVANCEMENT IN MATHEMATICAL SCIENCES: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5008701.
Full textSurender, Mehak Malhotra, and Monika Arora. "A short note on functions of bounded variation." In PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: (PTLICISIWS-2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0144575.
Full textLong, Philip M. "On the sample complexity of learning functions with bounded variation." In the eleventh annual conference. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/279943.279970.
Full textPosner, S. E., and S. R. Kulkarni. "On-line learning of functions of bounded variation under various sampling schemes." In the sixth annual conference. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/168304.168392.
Full textMurdianingsih, Indah Dwi, Susilo Hariyanto, Titi Udjiani, Yusephus D. Sumanto, and Idha Sihwaningrum. "Properties of bounded variation function of two variables." In THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON BASIC AND APPLIED SCIENCE (ICOWOBAS) 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0104246.
Full textDodonov, Nikolay Yu, and Vladimir V. Zhuk. "Uniform approximation of continuous functions of bounded variation by aggregates of summatory type." In 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE, 2015. http://dx.doi.org/10.1109/scp.2015.7342146.
Full textDimitriu, G., and B. Satco. "Urysohn measure driven integral equations in the space of bounded variation functions and applications." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16. Author(s), 2016. http://dx.doi.org/10.1063/1.4964972.
Full textZheng, Qian, and Fen Wu. "State Feedback and Output Feedback Control of Polynomial Nonlinear Systems Using Fractional Lyapunov Functions." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42147.
Full textLee, Dong Hwan. "Local stability and stabilization of discrete-time Takagi-Sugeno fuzzy systems using bounded variation rates of the membership functions." In 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA). IEEE, 2013. http://dx.doi.org/10.1109/cica.2013.6611665.
Full textWibowo, Supriyadi, V. Y. Kurniawan, and Siswanto. "The relation between Fα – absolutely continuous of order α ∈ (0, 1) and function of bounded variation." In THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019249.
Full textReports on the topic "Functions of bounded variation"
Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert. On Interpolation and Integration in Finite-Dimensional Spaces of Bounded Functions. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada458904.
Full textStefanski, L. A., R. J. Carroll, and D. Ruppert. Optimally Bounded Score Functions for Generalized Linear Models with Applications to Logistic Regression. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160348.
Full textManski, Charles, and John Pepper. How Do Right-To-Carry Laws Affect Crime Rates? Coping With Ambiguity Using Bounded-Variation Assumptions. Cambridge, MA: National Bureau of Economic Research, November 2015. http://dx.doi.org/10.3386/w21701.
Full textHanslow, Kevin. A General Welfare Decomposition for CGE Models. GTAP Technical Paper, March 2001. http://dx.doi.org/10.21642/gtap.tp19.
Full textCameron, Arthur, Shimshon Ben-Yehoshua, and Rebecca Hernandez. Design and Function of Modified Atmosphere Packaging Systems for Fresh Produce: a Unified Approach for Optimizing Oxygen, Carbon Dioxide and Relative Humidity. United States Department of Agriculture, January 1996. http://dx.doi.org/10.32747/1996.7613019.bard.
Full textJander, Georg, and Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Full textHertel, Thomas, David Hummels, Maros Ivanic, and Roman Keeney. How Confident Can We Be in CGE-Based Assessments of Free Trade Agreements? GTAP Working Paper, June 2003. http://dx.doi.org/10.21642/gtap.wp26.
Full textCollins, Clarence O., and Tyler J. Hesser. altWIZ : A System for Satellite Radar Altimeter Evaluation of Modeled Wave Heights. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39699.
Full textEchevarria-Doyle, Waleska, S. McKay, and Susan Bailey. Sensitivity of sediment transport analyses in dam removal applications. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47595.
Full textNeipert, Elizabeth, Todd Steissberg, and Charles Theiling. Spatial screening for environmental pool management opportunities. Engineer Research and Development Center (U.S.), October 2023. http://dx.doi.org/10.21079/11681/47719.
Full text