Academic literature on the topic 'Fundamental constants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fundamental constants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fundamental constants"

1

Duff, M. J. "How fundamental are fundamental constants?" Contemporary Physics 56, no. 1 (2014): 35–47. http://dx.doi.org/10.1080/00107514.2014.980093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fritzsch, Harald. "Fundamental physical constants." Uspekhi Fizicheskih Nauk 179, no. 4 (2009): 383. http://dx.doi.org/10.3367/ufnr.0179.200904d.0383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McNaught, Ian J., and Gavin D. Peckham. "Two fundamental constants." Journal of Chemical Education 64, no. 12 (1987): 999. http://dx.doi.org/10.1021/ed064p999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jacobsen, T. "On fundamental constants." European Journal of Physics 17, no. 2 (1996): 92. http://dx.doi.org/10.1088/0143-0807/17/2/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PERES, ASHER. "VARIABILITY OF FUNDAMENTAL CONSTANTS." International Journal of Modern Physics D 12, no. 09 (2003): 1751–54. http://dx.doi.org/10.1142/s0218271803004043.

Full text
Abstract:
Are universal fundamental constants really constant over cosmological times? Recent observations of the fine structure of spectral lines in the early universe have been interpreted as due to a variation of the fine structure constant e2/4πε0ℏc. From the assumed validity of Maxwell equations in general relativity and well known experimental facts, it is proved that e and ℏ are absolute constants. On the other hand, the speed of light need not be constant.
APA, Harvard, Vancouver, ISO, and other styles
6

Mohr, Peter J., Barry N. Taylor, and David B. Newell. "The fundamental physical constants." Physics Today 60, no. 7 (2007): 52–55. http://dx.doi.org/10.1063/1.2761803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacobsen, T. "Bremsstrahlung and fundamental constants." European Journal of Physics 17, no. 6 (1996): 365. http://dx.doi.org/10.1088/0143-0807/17/6/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Troitskiĭ, V. S. "Evolution of fundamental constants." Soviet Journal of Quantum Electronics 17, no. 9 (1987): 1212–13. http://dx.doi.org/10.1070/qe1987v017n09abeh009915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fritzsch, Harald. "The fundamental constants in physics." Physics-Uspekhi 52, no. 4 (2009): 359–67. http://dx.doi.org/10.3367/ufne.0179.200904d.0383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okun, Lev B. "The fundamental constants of physics." Uspekhi Fizicheskih Nauk 161, no. 9 (1991): 177–94. http://dx.doi.org/10.3367/ufnr.0161.199109e.0177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Fundamental constants"

1

Sandvik, Havard Bunes. "Varying fundamental constants in cosmology." Thesis, Imperial College London, 2002. http://hdl.handle.net/10044/1/11460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DiFilippo, Frank. "Precise atomic masses for determining fundamental constants." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/26860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Rodger. "The Relation between Fundamental Constants and Particle Physics Parameters." MDPI AG, 2017. http://hdl.handle.net/10150/624359.

Full text
Abstract:
The observed constraints on the variability of the proton to electron mass ratio and the fine structure constant are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as and provide important constraints on the parameter space of new physics and cosmologies.
APA, Harvard, Vancouver, ISO, and other styles
4

Murphy, Michael T. Physics Faculty of Science UNSW. "Probing variations in the fundamental constants with quasar absorption lines." Awarded by:University of New South Wales. School of Physics, 2002. http://handle.unsw.edu.au/1959.4/19062.

Full text
Abstract:
Precision cosmology challenges many aspects of fundamental physics. In particular, quasar absorption lines test the assumed constancy of fundamental constants over cosmological time-scales and distances. Until recently, the most reliable technique was the alkali doublet (AD) method where the measured doublet separation probes variations in the fine-structure constant, ???? e2/??c. However, the recently introduced many-multiplet (MM) method provides several advantages, including a demonstrated ???10-fold precision gain. This thesis presents detailed MM analyses of 3 independent Keck/HIRES sampl
APA, Harvard, Vancouver, ISO, and other styles
5

Davis, Tamara Maree Physics Faculty of Science UNSW. "Fundamental aspects of the expansion of the universe and cosmic horizons." Awarded by:University of New South Wales. Physics, 2004. http://handle.unsw.edu.au/1959.4/20640.

Full text
Abstract:
We use standard general relativity to clarify common misconceptions about fundamental aspects of the expansion of the Universe. In the context of the new standard Lambda-CDM cosmology we resolve conflicts in the literature regarding cosmic horizons and the Hubble sphere (distance at which recession velocity equals c) and we link these concepts to observational tests. We derive the dynamics of a non-comoving galaxy and generalize previous analyses to arbitrary FRW universes. We also derive the counter-intuitive result that objects at constant proper distance have a non-zero redshift. Receding g
APA, Harvard, Vancouver, ISO, and other styles
6

Alanko, S. (Seppo). "High resolution infrared spectroscopy on the fundamental bands of 13CH3I." Doctoral thesis, University of Oulu, 1999. http://urn.fi/urn:isbn:9514251857.

Full text
Abstract:
Abstract This thesis deals with the rotation-vibration theory and high resolution infrared spectroscopy of semirigid C3 molecules. Semirigid molecules form a class of molecules which are strongly bound with one well defined structure, and without low frequency internal motions. The theory, as well as the experimental studies of semirigid molecules are of special importance in the field of rotation-vibration spectroscopy. They provide a good starting point for interpreting and analyzing the spectra of practically all types of molecules. In this work, the theory is reviewed fromthe standpoint o
APA, Harvard, Vancouver, ISO, and other styles
7

Svanedal, Ida. "Fundamental Characterization and Technical Aspects of a Chelating Surfactant." Doctoral thesis, Mittuniversitetet, Avdelningen för kemiteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-21405.

Full text
Abstract:
The purpose of this study was to investigate the fundamental characteristics of a chelating surfactant in terms of solution behaviour, chelation of divalent metal ions, and interaction in mixtures with different foaming agents and divalent metal ion, as well as examining its prospects in some practical applications. Chelating surfactants are functional molecules, with both surface active and chelating properties, which are water soluble and therefore suitable for chelation in many aqueous environments. The dual functionality offers the possibility to recover the chelating surfactant as well as
APA, Harvard, Vancouver, ISO, and other styles
8

Prause, Nils [Verfasser], and Dieter [Akademischer Betreuer] Reimers. "The influence of asymmetric line profiles on the reliability of the search for varying fundamental constants / Nils Prause. Betreuer: Dieter Reimers." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1059237946/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Windberger, Robert-Alexander [Verfasser], and López-Urrutia José Ramón [Akademischer Betreuer] Crespo. "Identification of optical transitions in complex highly charged ions for applications in metrology and tests of fundamental constants / Robert-Alexander Windberger ; Betreuer: José Ramón Crespo López-Urrutia." Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://d-nb.info/1180396839/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Windberger, Alexander [Verfasser], and López-Urrutia José Ramón [Akademischer Betreuer] Crespo. "Identification of optical transitions in complex highly charged ions for applications in metrology and tests of fundamental constants / Robert-Alexander Windberger ; Betreuer: José Ramón Crespo López-Urrutia." Heidelberg : Universitätsbibliothek Heidelberg, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-188685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Fundamental constants"

1

Karshenboim, Savely G., and Ekkehard Peik, eds. Astrophysics, Clocks and Fundamental Constants. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b13178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Menin, Boris M. Fundamental constants: Evaluating measurement uncertainty. Cambridge Scholars Publishing, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1960-, Karshenboim S. G., and Peik E, eds. Astrophysics, clocks and fundamental constants. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cohen, E. Richard. Symbols, units, nomenclature and fundamental constants in physics. International Union of Pure and Applied Physics, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

NATO Advanced Study Institute on Gravitational Measurements, Fundamental Metrology, and Constants (1987 Erice, Italy). Gravitational measurements, fundamental metrology, and constants. Kluwer Academic Publishers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabbata, Venzo, and V. N. Melnikov, eds. Gravitational Measurements, Fundamental Metrology and Constants. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sabbata, Venzo. Gravitational Measurements, Fundamental Metrology and Constants. Springer Netherlands, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Ahlers, Bortfeldt J, and Kramer B. 1942-, eds. Units and fundamental constants in physics and chemistry. Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cohen, E. Richard. The 1986 adjustment of the fundamental physical constants. Pergamon Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martins, Carlos J. A. P., ed. The Cosmology of Extra Dimensions and Varying Fundamental Constants. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-3272-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Fundamental constants"

1

Cardarelli, François. "Fundamental Constants." In Scientific Unit Conversion. Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-3394-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cardarelli, François. "Fundamental Constants." In Encyclopaedia of Scientific Units, Weights and Measures. Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0003-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cardarelli, François. "Fundamental Constants." In Scientific Unit Conversion. Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0805-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cohen, E. Richard. "Fundamental Physical Constants." In Gravitational Measurements, Fundamental Metrology and Constants. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martienssen, Werner. "The Fundamental Constants." In Springer Handbook of Materials Data. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grabe, Michael. "Fundamental Constants of Physics." In Measurement Uncertainties in Science and Technology. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04888-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kapuścik, Edward. "Physics Without Physical Constants." In Frontiers of Fundamental Physics. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2560-8_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faustov, R. N. "Quantum Electrodynamics and Fundamental Constants." In Gravitational Measurements, Fundamental Metrology and Constants. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2955-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kiefer, Claus. "Quantum Gravity and Fundamental Constants." In Astrophysics, Clocks and Fundamental Constants. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40991-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chluba, Jens, and Luke Hart. "Varying Fundamental Constants Meet Hubble." In Springer Series in Astrophysics and Cosmology. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-0177-7_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fundamental constants"

1

Di Mario, D., B. G. Sidharth, F. Honsell, O. Mansutti, K. Sreenivasan, and A. De Angelis. "Connecting Fundamental Constants." In FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS: 9th International Symposium. AIP, 2008. http://dx.doi.org/10.1063/1.2947669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flambaum, V. V. "Variation of Fundamental Constants." In ATOMIC PHYSICS 20: XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wood, B. M. "Fundamental constants - the ultimate metric." In 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6250629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Varshalovich, D. A., A. Y. Potekhin, and A. V. Ivanchik. "Testing cosmological variability of fundamental constants." In X-RAY AND INNER-SHELL PROCESSES: 18th International Conference. AIP, 2000. http://dx.doi.org/10.1063/1.1302777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feldmeier, Hans, Elena Litvinova, Victor Flambaum, and Jacek Dobaczewski. "Variation of fundamental constants and 229Th." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grabe, Michael. "Fundamental Constants - True Values and Expectations." In 2004 Conference on Precision Electromagnetic Measurements. IEEE, 2004. http://dx.doi.org/10.1109/cpem.2004.305465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krauth, Julian J., Laura S. Dreissen, Charlaine Roth, et al. "Paving the way for fundamental physics tests with singly-ionized helium." In International Conference on Precision Physics and Fundamental Physical Constants. Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adkins, Gregory, Benjamin Akers, Md Faisal Alam, Lam M. Tran, and Xuan Zhang. "Calculation of higher order corrections to positronium energy levels." In International Conference on Precision Physics and Fundamental Physical Constants. Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pásztor, Gabriella. "Precision tests of the Standard Model at the LHC with the ATLAS and CMS detectors." In International Conference on Precision Physics and Fundamental Physical Constants. Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.353.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sopczak, Andre. "Precision measurements in Higgs sector at ATLAS and CMS." In International Conference on Precision Physics and Fundamental Physical Constants. Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.353.0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fundamental constants"

1

Cohen, E. Richard, and Barry N. Taylor. Fundamental physical constants. National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.sp.731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohr, P. J., P. J. Mohr, and B. N. Taylor. CODATA recommended values of the fundamental physical constants :. National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.sp.961e2005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohr, P. J., D. B. Newell, and B. N. Taylor. CODATA recommended values of the fundamental physical constants: 2014. National Institute of Standards and Technology, 2015. http://dx.doi.org/10.6028/nist.sp.961r2015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohr, P. J., P. J. Mohr, and B. N. Taylor. CODATA recommended values of the fundamental constants of physics and chemistry. National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.sp.959e2005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohr, P. J., P. J. Mohr, B. N. Taylor, and D. B. Newell. CODATA recommended values of the fundamental constants of physics and chemistry. National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.959e2008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohr, Peter J. 2014 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL CONSTANTS OF PHYSICS AND CHEMISTRY. National Institute of Standards and Technology, 2017. http://dx.doi.org/10.6028/nist.sp.959e2017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohr, P. J., P. J. Mohr, and B. N. Taylor. 1998 CODATA recommended values of the fundamental constants of physics and chemistry. National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.sp.961e2001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soloviev, V. N., and Y. V. Romanenko. Economic analog of Heisenberg uncertainly principle and financial crisis. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", 2017. http://dx.doi.org/10.31812/0564/2463.

Full text
Abstract:
The Heisenberg uncertainty principle is one of the cornerstones of quantum mechanics. The modern version of the uncertainty principle, deals not with the precision of a measurement and the disturbance it introduces, but with the intrinsic uncertainty any quantum state must possess, regardless of what measurement is performed. Recently, the study of uncertainty relations in general has been a topic of growing interest, specifically in the setting of quantum information and quantum cryptography, where it is fundamental to the security of certain protocols. The aim of this study is to analyze the
APA, Harvard, Vancouver, ISO, and other styles
9

Biedenharn, L. C., and J. C. Solem. The fundamental and universal nature of Boltzmann`s constant. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/266721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maydykovskiy, Igor, and Petras Užpelkis. The Physical Essence of Time. Intellectual Archive, 2020. http://dx.doi.org/10.32370/iaj.2450.

Full text
Abstract:
The article considers the model of the space-frequency-time continuum, according to which the physical essence of Time is manifested as a fraction of electromagnetic energy spent on updating a material object in a cyclic process of copying-incarnation. For all structural levels of physical reality, the value of this fraction is a fundamental constant, which can be represented as the tangent of the loss angle, or expressed in radians, as the angle of inclination of the evolutionary spiral, which characterizes the rate of change of states or the duration of events and processes. The value of thi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!