To see the other types of publications on this topic, follow the link: Fundamental frequency.

Journal articles on the topic 'Fundamental frequency'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fundamental frequency.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Crozier, M. J., and T. Glade. "Frequency and magnitude of landsliding: fundamental research issues." Zeitschrift für Geomorphologie Supplement Volumes 115 (July 1, 1999): 141–55. http://dx.doi.org/10.1127/zfgsuppl/115/1999/141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brinn, Ira Mark. "Fundamental vibrational frequency correlation." Journal of Molecular Structure 145, no. 3-4 (1986): 257–60. http://dx.doi.org/10.1016/0022-2860(86)85029-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brinn, Ira M. "Fundamental vibrational frequency correlation." Journal of Molecular Structure 176 (May 1988): 223–37. http://dx.doi.org/10.1016/0022-2860(88)80243-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bauer, Harold R. "Frequency Code: Orofacial Correlates of Fundamental Frequency." Phonetica 44, no. 3 (1987): 173–91. http://dx.doi.org/10.1159/000261793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carlyon, Robert P., Laurent Demany, and Catherine Semal. "Detection of across‐frequency differences in fundamental frequency." Journal of the Acoustical Society of America 91, no. 1 (1992): 279–92. http://dx.doi.org/10.1121/1.402770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qiu, Lunji, Haiyun Yang, and Soo-Ngee Koh. "Fundamental frequency determination based on instantaneous frequency estimation." Signal Processing 44, no. 2 (1995): 233–41. http://dx.doi.org/10.1016/0165-1684(95)00027-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mueller, Peter B., and An Xue. "Variability of fundamental frequency measures." Logopedics Phoniatrics Vocology 21, no. 1 (1996): 64–67. http://dx.doi.org/10.3109/14015439609099205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Cheveigné, Alain. "Two-voice fundamental frequency estimation." Journal of the Acoustical Society of America 111, no. 5 (2002): 2446. http://dx.doi.org/10.1121/1.4778425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sward, Johan, Hongbin Li, and Andreas Jakobsson. "Off-Grid Fundamental Frequency Estimation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 26, no. 2 (2018): 296–303. http://dx.doi.org/10.1109/taslp.2017.2775800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Karnell, Michael. "Fundamental Frequency and Perturbation Measurement." Seminars in Speech and Language 12, no. 02 (1991): 88–97. http://dx.doi.org/10.1055/s-2008-1064212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

KITAJIMA, Kazutomo, and Kazunari TANAKA. "Fundamental Frequency Control; Aerodynamic Viewpoint." Practica Oto-Rhino-Laryngologica 88, no. 4 (1995): 419–25. http://dx.doi.org/10.5631/jibirin.88.419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mehta, Anahita H., and Andrew J. Oxenham. "Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency." Journal of the Acoustical Society of America 147, no. 4 (2020): 2314–22. http://dx.doi.org/10.1121/10.0001092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Miyazono, Hiromitsu, Brian R. Glasberg, and Brian C. J. Moore. "Perceptual learning of fundamental frequency discrimination: Effects of fundamental frequency, harmonic number, and component phase." Journal of the Acoustical Society of America 128, no. 6 (2010): 3649–57. http://dx.doi.org/10.1121/1.3504713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gockel, Hedwig E., Robert P. Carlyon, and Christopher J. Plack. "Combining information across frequency regions in fundamental frequency discrimination." Journal of the Acoustical Society of America 127, no. 4 (2010): 2466–78. http://dx.doi.org/10.1121/1.3327811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Theelen, Mathilde. "Fundamental Frequency Differences Including Language Effects." Junctions: Graduate Journal of the Humanities 2, no. 1 (2017): 9. http://dx.doi.org/10.33391/jgjh.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kotby, M. N., I. R. Titze, M. M. Saleh, and D. A. Berry. "Fundamental Frequency Stability in Functional Dysphonia." Acta Oto-Laryngologica 113, no. 3 (1993): 439–44. http://dx.doi.org/10.3109/00016489309135841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Iwata, Hirokazu. "Miniaturized ultrahigh frequency fundamental quartz resonators." IEICE Electronics Express 1, no. 12 (2004): 346–51. http://dx.doi.org/10.1587/elex.1.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Trout, J. D. "Fundamental frequency in minimal pair sentences." Journal of the Acoustical Society of America 99, no. 4 (1996): 2547–74. http://dx.doi.org/10.1121/1.415153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yamada, Tomonori, and Misako Aida. "Fundamental frequency from classical molecular dynamics." Physical Chemistry Chemical Physics 17, no. 5 (2015): 3227–40. http://dx.doi.org/10.1039/c4cp04068f.

Full text
Abstract:
We give a theoretical validation of for calculating fundamental frequencies of a molecule from classical molecular dynamics (MD) when its anharmonicity is small enough to be treated by perturbation theory.
APA, Harvard, Vancouver, ISO, and other styles
20

Hnath-Chisolm, Theresa, and Arthur Boothroyd. "Speechreading Enhancement by Voice Fundamental Frequency." Journal of Speech, Language, and Hearing Research 35, no. 5 (1992): 1160–68. http://dx.doi.org/10.1044/jshr.3505.1160.

Full text
Abstract:
Recognition of words in sentences of known topic was measured in normally hearing adults via speechreading alone and speechreading supplemented with auditory presentation of signals intended to convey variations of voice fundamental frequency (F o ) over time. Three signals were used: (a) the low-pass filtered output of an electroglottograph (unprocessed F o ), (b) a constant amplitude sine wave whose instantaneous frequency was intended to equal that of F o (processed F o ), and (c) the same sine wave restricted to a small number of discrete frequency steps (quantized F o ). As the number of
APA, Harvard, Vancouver, ISO, and other styles
21

de Cheveigné, Alain, and Nathalie Henrich. "Fundamental frequency estimation of singing voice." Journal of the Acoustical Society of America 111, no. 5 (2002): 2416. http://dx.doi.org/10.1121/1.4778246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Petley, B. W. "Time and frequency in fundamental metrology." Proceedings of the IEEE 79, no. 7 (1991): 1070–76. http://dx.doi.org/10.1109/5.84984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Van Doren, Maxine. "Intrinsic fundamental frequency of Amharic vowels." Journal of the Acoustical Society of America 146, no. 4 (2019): 3085. http://dx.doi.org/10.1121/1.5137719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hafke, Honorata Zofia. "Nonconscious control of fundamental voice frequency." Journal of the Acoustical Society of America 123, no. 1 (2008): 273–78. http://dx.doi.org/10.1121/1.2817357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Conroy, R. S. "Frequency standards, metrology and fundamental constants." Contemporary Physics 44, no. 2 (2003): 99–135. http://dx.doi.org/10.1080/00107910210164020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Keating, Patricia. "Fundamental frequency in English and Mandarin." Journal of the Acoustical Society of America 125, no. 4 (2009): 2571. http://dx.doi.org/10.1121/1.4783757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zawadzki, Paul A., and Harvey R. Gilbert. "Vowel fundamental frequency and articulator position." Journal of Phonetics 17, no. 3 (1989): 159–66. http://dx.doi.org/10.1016/s0095-4470(19)30425-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aichinger, P., M. Hagmüller, I. Roesner, B. Schneider-Stickler, J. Schoentgen, and F. Pernkopf. "Fundamental frequency tracking in diplophonic voices." Biomedical Signal Processing and Control 37 (August 2017): 69–81. http://dx.doi.org/10.1016/j.bspc.2016.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Xu, Yi. "Fundamental Frequency Peak Delay in Mandarin." Phonetica 58, no. 1-2 (2001): 26–52. http://dx.doi.org/10.1159/000028487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hruška, Robin, and Tomáš Bořil. "Temporal variability of fundamental frequency contours." AUC PHILOLOGICA 2017, no. 3 (2017): 35–44. http://dx.doi.org/10.14712/24646830.2017.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Robb, Michael P., and Allan B. Smith. "Fundamental Frequency Onset and Offset Behavior." Journal of Speech, Language, and Hearing Research 45, no. 3 (2002): 446–56. http://dx.doi.org/10.1044/1092-4388(2002/035).

Full text
Abstract:
Short-term changes in vowel fundamental frequency (F 0 ) immediately preceding (F 0 offset) and following (F 0 onset) production of voiceless obstruents were examined in groups of 4-year-olds, 8-year-olds, and 21-year-olds. Definitive patterns of laryngeal behavior were observed for each measure. F 0 was found to significantly lower at vowel offset across age groups, with no significant differences noted between groups, suggesting that F 0 offset is simply an acoustic consequence of producing a voiceless obstruent preceded by a vowel. The F 0 at vowel onset was high and significantly decreased
APA, Harvard, Vancouver, ISO, and other styles
32

Yost, William A., Christopher A. Brown, and Farris Walling. "Fundamental frequency and pitch shift discrimination." Journal of the Acoustical Society of America 127, no. 3 (2010): 1989. http://dx.doi.org/10.1121/1.3385133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Falck, Frank J., Patricia Sartin Lawler, and A. Yonovitz. "Effects of stuttering on fundamental frequency." Journal of Fluency Disorders 10, no. 2 (1985): 123–35. http://dx.doi.org/10.1016/0094-730x(85)90020-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Radhakrishnan, G., M. K. Sundaresan, and B. Nageswara Rao. "FUNDAMENTAL FREQUENCY OF THIN ELASTIC PLATES." Journal of Sound and Vibration 209, no. 2 (1998): 373–76. http://dx.doi.org/10.1006/jsvi.1997.1242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vojtech, Jennifer M., Roxanne K. Segina, Daniel P. Buckley, et al. "Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method." Journal of the Acoustical Society of America 146, no. 5 (2019): 3184–202. http://dx.doi.org/10.1121/1.5131025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Katz, William F., and Peter F. Assmann. "Identification of children's and adults' vowels: intrinsic fundamental frequency, fundamental frequency dynamics, and presence of voicing." Journal of Phonetics 29, no. 1 (2001): 23–51. http://dx.doi.org/10.1006/jpho.2000.0135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bregman, Albert S., Christine Liao, and Robert Levitan. "Auditory grouping based on fundamental frequency and formant peak frequency." Canadian Journal of Psychology/Revue canadienne de psychologie 44, no. 3 (1990): 400–413. http://dx.doi.org/10.1037/h0084255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Riding, David, Deryle Lonsdale, and Bruce Brown. "The Effects of Average Fundamental Frequency and Variance of Fundamental Frequency on Male Vocal Attractiveness to Women." Journal of Nonverbal Behavior 30, no. 2 (2006): 55–61. http://dx.doi.org/10.1007/s10919-006-0005-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Szczepański, Tomasz, Stanisław Traczyk, and Paweł Dziedziak. "The method of fundamental harmonic frequency determination." Transport Samochodowy 63, no. 1 (2021): 38–42. http://dx.doi.org/10.5604/01.3001.0014.8021.

Full text
Abstract:
Analysis of vibroacoustic signals is one of the more frequently used mechanical devices diagnostic methods occurring among others in car diagnostics. Often, it happens that the most important element of the recorded course is the fundamental harmonic frequency of vibrations. Fundamental frequency indicates the main process related to the operation of the device and allows to follow its course. In the article the author's method of determining the fundamental frequency in the signal will be presented which is the subject of a patent application. Its theoretical basis and application examples we
APA, Harvard, Vancouver, ISO, and other styles
40

Honda, Kiyoshi. "Biological Mechanisms for Tuning Voice Fundamental Frequency." Koutou (THE LARYNX JAPAN) 8, no. 2 (1996): 109–15. http://dx.doi.org/10.5426/larynx1989.8.2_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hwang, Shun Fa, Yi Lung Lin, and Yuder Chen. "Optimization of Composite Laminates for Fundamental Frequency." Applied Mechanics and Materials 764-765 (May 2015): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amm.764-765.71.

Full text
Abstract:
To maximize the fundamental frequency of composite laminates, a hybrid optimization algorithm which combines the respective merits of the genetic algorithm and the simulated annealing algorithm is adopted. This hybrid algorithm also incorporates adaptive mechanisms designed to adjust the probabilities of the cross-over and mutation operators. Then, this algorithm is applied to optimize the fiber angle of each layer of a composite laminate such that its fundamental natural frequency is maximized. The results indicate that this hybrid optimization algorithm could quickly find the optimal fiber a
APA, Harvard, Vancouver, ISO, and other styles
42

Awan, Shaheen N., and Peter B. Mueller. "Speaking fundamental frequency characteristics of centenarian females." Clinical Linguistics & Phonetics 6, no. 3 (1992): 249–54. http://dx.doi.org/10.3109/02699209208985533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kitajima, Kazutomo, Kazunari Tanaka, Hideyuki Kataoka, and Narihiro Oowaki. "The Regulation of Fundamental Frequency of Phonation." Koutou (THE LARYNX JAPAN) 10, no. 2 (1998): 77–81. http://dx.doi.org/10.5426/larynx1989.10.2_77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bickley, Corine. "Formant estimation of high fundamental frequency speech." Journal of the Acoustical Society of America 79, S1 (1986): S38. http://dx.doi.org/10.1121/1.2023204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hasan, Mirza A. F. M. Rashidul, Rubaiyat Yasmin, Dipankar Das, M. M. Hoque, M. I. Pramanik, and M. S. Rahman. "Fundamental Frequency Extraction of Noisy Speech Signals." Rajshahi University Journal of Science and Engineering 43 (December 31, 2015): 51–61. http://dx.doi.org/10.3329/rujse.v43i0.26154.

Full text
Abstract:
In this paper, we proposed a correlation based method which is a new approach using the autocorrelation function is weighted by the reciprocal of the YIN and very useful for accurate fundamental frequency extraction. The autocorrelation function and also YIN is a popular measurement in estimating fundamental frequency in time domain. In our proposed method, instead of the original signal, we employ its center clipping signal for obtaining the autocorrelation function and this function is weighted by the reciprocal of the YIN for fundamental frequency detection. Comparative results on female an
APA, Harvard, Vancouver, ISO, and other styles
46

Gussenhoven, C., B. H. Repp, A. Rietveld, H. H. Rump, and J. Terken. "The perceptual prominence of fundamental frequency peaks." Journal of the Acoustical Society of America 102, no. 5 (1997): 3009–22. http://dx.doi.org/10.1121/1.420355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Robles-Puente, Sergio. "Fundamental frequency movements in one-word imperatives." Journal of the Acoustical Society of America 137, no. 4 (2015): 2267. http://dx.doi.org/10.1121/1.4920272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

VanDam, Mark, Paul De Palma, and William E. Strong. "Fathers' use of fundamental frequency in motherese." Journal of the Acoustical Society of America 137, no. 4 (2015): 2267. http://dx.doi.org/10.1121/1.4920275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Flowers, JL, HA Klein, and HS Margolis. "Hydrogenic systems, frequency standards and fundamental constants." Contemporary Physics 45, no. 2 (2004): 123–45. http://dx.doi.org/10.1080/00107510410001647562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lahey, Margaret, Judy Flax, Katherine Harris, and Arthur Boothroyd. "Vocal Fundamental Frequency Variability in Young Children." Journal of Speech, Language, and Hearing Research 33, no. 3 (1990): 619–21. http://dx.doi.org/10.1044/jshr.3303.619b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!