Academic literature on the topic 'Fundamental theorem of algebra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fundamental theorem of algebra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fundamental theorem of algebra"
Blecher, David P. "On Morita's fundamental theorem for $C^*$-algebras." MATHEMATICA SCANDINAVICA 88, no. 1 (March 1, 2001): 137. http://dx.doi.org/10.7146/math.scand.a-14319.
Full textHirschhorn, Michael D. "The Fundamental Theorem of Algebra." College Mathematics Journal 29, no. 4 (September 1998): 276. http://dx.doi.org/10.2307/2687681.
Full textHirschhorn, Michael D. "The Fundamental Theorem of Algebra." College Mathematics Journal 29, no. 4 (September 1998): 276–77. http://dx.doi.org/10.1080/07468342.1998.11973954.
Full textPerrucci, Daniel, and Marie-Françoise Roy. "Quantitative fundamental theorem of algebra." Quarterly Journal of Mathematics 70, no. 3 (May 15, 2019): 1009–37. http://dx.doi.org/10.1093/qmath/haz008.
Full textBowman, Chris, Stephen Doty, and Stuart Martin. "An integral second fundamental theorem of invariant theory for partition algebras." Representation Theory of the American Mathematical Society 26, no. 15 (April 1, 2022): 437–54. http://dx.doi.org/10.1090/ert/593.
Full textBolima, Jethro Elijah, and Katrina Belleza Fuentes. "First and Third Isomorphism Theorems for the Dual B-Algebra." European Journal of Pure and Applied Mathematics 16, no. 1 (January 29, 2023): 577–86. http://dx.doi.org/10.29020/nybg.ejpam.v16i1.4675.
Full textVýborný, Rudolf. "A simple proof of the Fundamental Theorem of Algebra." Mathematica Bohemica 135, no. 1 (2010): 57–61. http://dx.doi.org/10.21136/mb.2010.140682.
Full textLoya, Paul. "Green's Theorem and the Fundamental Theorem of Algebra." American Mathematical Monthly 110, no. 10 (December 2003): 944. http://dx.doi.org/10.2307/3647967.
Full textLoya, Paul. "Green's Theorem and the Fundamental Theorem of Algebra." American Mathematical Monthly 110, no. 10 (December 2003): 944–46. http://dx.doi.org/10.1080/00029890.2003.11920036.
Full textDerksen, Harm. "The Fundamental Theorem of Algebra and Linear Algebra." American Mathematical Monthly 110, no. 7 (August 2003): 620. http://dx.doi.org/10.2307/3647746.
Full textDissertations / Theses on the topic "Fundamental theorem of algebra"
Shibalovich, Paul. "Fundamental theorem of algebra." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2203.
Full textBartolini, Gabriel. "On Poicarés Uniformization Theorem." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7968.
Full textA compact Riemann surface can be realized as a quotient space $\mathcal{U}/\Gamma$, where $\mathcal{U}$ is the sphere $\Sigma$, the euclidian plane $\mathbb{C}$ or the hyperbolic plane $\mathcal{H}$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal{U}\rightarrow\mathcal{U}/\Gamma$.
For each $\Gamma$ acting on $\mathcal{H}$ we have a polygon $P$ such that $\mathcal{H}$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal{H}$ under $\Gamma$.
CUNEO, Alejandro Javier. "Math for freedom. An original proof of the fundamental theorem of algebra within the ambit of real numbers." Doctoral thesis, Università degli studi di Bergamo, 2013. http://hdl.handle.net/10446/28645.
Full textMunoz, Susana L. "A Fundamental Unit of O_K." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/133.
Full textSteggles, L. J. "Extensions of higher-order algebra : fundamental theory and case studies." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639103.
Full textRocha, Vitail José. "Números complexos e o teorema fundamental da álgebra." Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/3683.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-11-25T12:21:37Z (GMT) No. of bitstreams: 2 Dissertação - Vitail José Rocha - 2014.pdf: 2821899 bytes, checksum: 15f18dbbd000ffd3491c30d95cc2763f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-11-25T12:21:37Z (GMT). No. of bitstreams: 2 Dissertação - Vitail José Rocha - 2014.pdf: 2821899 bytes, checksum: 15f18dbbd000ffd3491c30d95cc2763f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-07-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The objective of this work is to tell a little bit about the emergence and development of the Fundamental Theorem of Algebra, having as plot the historical context and the formalization of Complex Numbers, which mixes with this theorem. Considering the mathematical rigor in the construction of this subject, which o ered structure for the consolidation of this theorem. This work aims to achieve a more accessible demonstration, due to their necessary presence in high school, but in an axiomatic form.
O objetivo deste trabalho é contar um pouco sobre o surgimento e desenvolvimento do Teorema Fundamental da Álgebra, tendo como enredo o contexto histórico e formaliza ção dos Números Complexos, que se mistura com este teorema. Levando em consideração o rigor matemático na construção deste corpo, o qual ofereceu estrutura para a consolidação deste teorema. Este trabalho busca alcançar uma demonstração mais acessível, devido a sua presença necessária no Ensino Médio, mas de forma axiom ática .
Mathew, Panakkal J. "Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/math_diss/2.
Full textCosta, Allan Inocêncio de Souza. "Uma demonstração do teorema fundamental da álgebra." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8723.
Full textApproved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-04T14:06:15Z (GMT) No. of bitstreams: 1 DissAISC.pdf: 2959521 bytes, checksum: 8f70ee52c92314238d50ce361fc05981 (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-05-04T14:06:23Z (GMT) No. of bitstreams: 1 DissAISC.pdf: 2959521 bytes, checksum: 8f70ee52c92314238d50ce361fc05981 (MD5)
Made available in DSpace on 2017-05-04T14:10:34Z (GMT). No. of bitstreams: 1 DissAISC.pdf: 2959521 bytes, checksum: 8f70ee52c92314238d50ce361fc05981 (MD5) Previous issue date: 2016-10-21
Não recebi financiamento
In this work we explain an elegant and accessible proof of the Fundamental Theorem of Algebra using the Lagrange Multipliers method. We believe this will be a valuable resource not only to Mathematics students, but also to students in related areas, as the Lagrange Multipliers method that lies at the heart of the proof is widely taught.
Neste trabalho expomos uma demonstração acessível e elegante do Teorema Fundamental da Álgebra utilizando o método dos multiplicadores de Lagrange. Acreditamos que este trabalho seria uma fonte valiosa não são para estudantes de Matemática, mas também para estudantes de áreas relacionadas, uma vez que o método dos multiplicadores de Lagrange é amplamente ensinado em cursos de exatas.
Costa, Antônio Geraldo Lacerda da. "Números complexos: um pouco de história, ensino e aplicações." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7509.
Full textApproved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-27T19:13:28Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 630083 bytes, checksum: 9ec35216236b2cb573332fb7cd30c375 (MD5)
Made available in DSpace on 2015-05-27T19:13:28Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 630083 bytes, checksum: 9ec35216236b2cb573332fb7cd30c375 (MD5) Previous issue date: 2013-08-14
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
We present the main properties related to complex numbers. We justify as the history of mathematics can contribute to learning that content. Then we describe briefly the history of complex numbers. We also show where the complex numbers can be applied both within mathematics itself, and beyond.
Neste trabalho apresentamos as principais propriedades referentes aos números complexos. Justificamos como a História da Matemática pode contribuir para a aprendizagem desse conteúdo. Em seguida descreveremos de forma sucinta a história dos números complexos. Mostramos também onde os números complexos podem ser aplicados, tanto dentro da própria Matemática, como fora dela.
Toledo, André Ferraz de. "Teorema fundamental da álgebra : uma abordagem visual para o Ensino Médio." reponame:Repositório Institucional da UFABC, 2016.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016.
O Teorema Fundamental da Álgebra é um tópico de grande relevância para a Matemática, com o qual o aluno toma contato na 3a série do Ensino Médio. Talvez porque todas as demonstrações conhecidas desse resultado utilizem argumentos que não podem ser apresentados de modo preciso nessa etapa de ensino, sua abordagem em diversos livros didáticos resume-se, basicamente, a destacar algumas de suas consequências e aplicações. O propósito deste trabalho é fornecer um material que possa ser utilizado por professores da Educação Básica no intuito de explorar esse fascinante resultado. Para atingirmos esse objetivo, apresentamos uma breve contextualizaçãohistória do Teorema Fundamental da Álgebra, que serve tanto para apontar sua utilidade em outros ramos da Matemática como também para observar a evolução de certos conceitos matemáticos. Em seguida, apresentamos uma prova rigorosa desse resultado, com o menor nível de complexidade possível, além de duas abordagens alternativas com apelo visual que podem ser utilizadas para apresentar uma justificativa de sua validade aos alunos do Ensino Médio.
The Fundamental Theorem of Algebra is a topic of great relevance to Mathematics, with which the student makes contact in the 3rd grade of High School. Perhaps because all known demonstrations of this result use arguments that can not be accurately presented at this stage of teaching, its approach in several textbooks basically boils down to highlighting some of its consequences and applications. The purpose of this work is to provide a material that can be used by teachers of Basic Education in order to explore this fascinating result. To reach this goal, we present a brief history of the Fundamental Theorem of Algebra, which serves both to point out its usefulness in other branches of mathematics and also to observe the evolution of certain mathematical concepts. Next, we present a rigorous proof of this result, with the lowest level of complexity possible, as well as two alternative approaches with visual appeal that can be used to present a justification of its validity to high school students.
Books on the topic "Fundamental theorem of algebra"
Fine, Benjamin, and Gerhard Rosenberger. The Fundamental Theorem of Algebra. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1928-6.
Full textBenjamin, Fine. To themeliōdes theōrēma tēs algevras. Athēna: Ekdoseis Leader Books, 2001.
Find full textBardy, Nicole. Systèmes de racines infinis. [Paris, France]: Société mathématique de France, 1996.
Find full textThe optimal version of Hua's fundamental theorem of geometry of rectangular matrices. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textLevy, Leon S. Fundamental concepts of computer science: Mathematical foundations of programming. New York, N.Y: Dorset House, 1988.
Find full textKadison, Richard V. Fundamentals of the theory of operator algebras. Providence, R.I: American Mathematical Society, 1997.
Find full textR, Ringrose John, ed. Fundamentals of the theory of operator algebras. Providence,RI: American Mathematical Society, 1999.
Find full text1974-, Nelson Sam, ed. Quandles: An introduction to the algebra of knots. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBook chapters on the topic "Fundamental theorem of algebra"
Dubinsky, Ed, and Uri Leron. "The Fundamental Homomorphism Theorem." In Learning Abstract Algebra with ISETL, 119–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-25454-7_4.
Full textDubinsky, Ed, and Uri Leron. "The Fundamental Homomorphism Theorem." In Learning Abstract Algebra with ISETL, 119–51. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2602-4_4.
Full textDubinsky, Ed, and Uri Leron. "The Fundamental Homomorphism Theorem." In Learning Abstract Algebra with ISETL, 119–51. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2620-8_4.
Full textChilds, Lindsay N. "The Fundamental Theorem of Algebra." In A Concrete Introduction to Higher Algebra, 253–76. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4419-8702-0_16.
Full textDawson, John W. "The Fundamental Theorem of Algebra." In Why Prove it Again?, 59–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17368-9_8.
Full textAigner, Martin, and Günter M. Ziegler. "The fundamental theorem of algebra." In Proofs from THE BOOK, 151–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57265-8_21.
Full textStewart, Ian. "The ‘fundamental theorem of algebra’." In Galois Theory, 185–89. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0839-0_19.
Full textAigner, Martin, and Günter M. Ziegler. "The fundamental theorem of algebra." In Proofs from THE BOOK, 147–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44205-0_21.
Full textAgarwal, Ravi P., Kanishka Perera, and Sandra Pinelas. "The Fundamental Theorem of Algebra." In An Introduction to Complex Analysis, 125–31. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0195-7_19.
Full textAnglin, W. S., and J. Lambek. "The Fundamental Theorem of Algebra." In The Heritage of Thales, 199–201. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0803-7_39.
Full textConference papers on the topic "Fundamental theorem of algebra"
Falkensteiner, Sebastian, Cristhian Garay-López, Mercedes Haiech, Marc Paul Noordman, Zeinab Toghani, and François Boulier. "The fundamental theorem of tropical partial differential algebraic geometry." In ISSAC '20: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373207.3404040.
Full textNalbach, Jasper, Erika Ábrahám, and Gereon Kremer. "Extending the Fundamental Theorem of Linear Programming for Strict Inequalities." In ISSAC '21: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3452143.3465538.
Full textMiller, Scott M. "Kinematics of Meshing Surfaces Using Geometric Algebra." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/ptg-48086.
Full textUrrutia, Luis F. "Towards a loop representation of connection theories defined over a super Lie algebra." In Workshops on particles and fields and phenomenology of fundamental interactions. AIP, 1996. http://dx.doi.org/10.1063/1.49736.
Full textCoquereaux, R. "Classical and quantum polyhedra: A fusion graph algebra point of view." In NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES: 37th Karpacz Winter School of Theoretical Physics. AIP, 2001. http://dx.doi.org/10.1063/1.1419325.
Full textGe, Q. J. "On the Matrix Algebra Realization of the Theory of Biquaternions." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0221.
Full textGouttefarde, Marc. "Characterizations of Fully Constrained Poses of Parallel Cable-Driven Robots: A Review." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49467.
Full textHossain, Awlad. "Teaching an Undergraduate Introductory Finite Element Analysis Course: Successful Implementation for Students Learning." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50091.
Full textBertozzini, Paolo. "Categorical Operator Algebraic Foundations of Relational Quantum Theory." In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0206.
Full textHou, Bo, Zilong Zhang, and Bingling Cai. "The Fundamental Theorem of Entwined Modules." In 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5365484.
Full textReports on the topic "Fundamental theorem of algebra"
Goldman, Terrance J. Fundamental length from algebra. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1571586.
Full textL��pez Fern��ndez, Jorge M., and Omar A. Hern��ndez Rodr��guez. Teaching the Fundamental Theorem of Calculus: A Historical Reflection. Washington, DC: The MAA Mathematical Sciences Digital Library, January 2012. http://dx.doi.org/10.4169/loci003803.
Full textVolikova, Maryna M., Tetiana S. Armash, Yuliia V. Yechkalo, and Vladimir I. Zaselskiy. Practical use of cloud services for organization of future specialists professional training. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3269.
Full text