Books on the topic 'Fundamental theorem of arithmetic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Fundamental theorem of arithmetic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
service), SpringerLink (Online, ed. The Arithmetic of Fundamental Groups: PIA 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textStix, Jakob. Rational Points and Arithmetic of Fundamental Groups: Evidence for the Section Conjecture. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textFine, Benjamin, and Gerhard Rosenberger. The Fundamental Theorem of Algebra. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1928-6.
Full textAitken, Wayne. An arithmetic Riemann-Roch theorem for singular arithmetic surfaces. Providence, R.I: American Mathematical Society, 1996.
Find full textFaltings, Gerd. Lectures on the arithmetic Riemann-Roch theorem. Princeton, N.J: Princeton University Press, 1992.
Find full textNational Institute of Public Finance and Policy (India), ed. The second fundamental theorem of positive economics. New Delhi: National Institute of Public Finance and Policy, 2012.
Find full textStix, Jakob, ed. The Arithmetic of Fundamental Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23905-2.
Full textKyōto Daigaku. Sūri Kaiseki Kenkyūjo. Communications in arithmetic fundamental groups. [Kyoto]: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2002.
Find full textFried, Michael, and Yasutaka Ihara, eds. Arithmetic Fundamental Groups and Noncommutative Algebra. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/pspum/070.
Full textQuaife, Art. Automated development of fundamental mathematical theories. Dordrecht: Kluwer Academic, 1992.
Find full textFermat's last theorem. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textStix, Jakob. Rational Points and Arithmetic of Fundamental Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30674-7.
Full textBenjamin, Fine. To themeliōdes theōrēma tēs algevras. Athēna: Ekdoseis Leader Books, 2001.
Find full textThe optimal version of Hua's fundamental theorem of geometry of rectangular matrices. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textBardy, Nicole. Systèmes de racines infinis. [Paris, France]: Société mathématique de France, 1996.
Find full textCapacity theory with local rationality: The strong Fekete-Szegő theorem on curves. Providence, Rhode Island: American Mathematical Society, 2013.
Find full text1942-, Fried Michael D., and Ihara Y. 1938-, eds. Arithmetic fundamental groups and noncommutative algebra: 1999 Von Neumann Conference on Arithmetic Fundamental Groups and Noncommutative Algebra, August 16-27, 1999, Mathematical Sciences Research Institute, Berkeley, California. Providence, R.I: American Mathematical Society, 2002.
Find full textDoran, Edward. Fundamental mathematics for college and technical students: A study of arithmetic, calculator, algebra, geometry, trigonometry. 2nd ed. Broomfield, CO: Finesse Pub. Co., 1988.
Find full textThomas, Taylor. Ē theōrētikē arithmētikē tōn pythagoreiōn. Athēna: Iamvlichos, 1995.
Find full textThe Arithmetic of Fundamental Groups Contributions in Mathematical and Computational Sciences. Springer, 2012.
Find full textRational Points and Arithmetic of Fundamental Groups Lecture Notes in Mathematics. Springer, 2012.
Find full textEarl, Richard, and James Nicholson. The Concise Oxford Dictionary of Mathematics. 6th ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/acref/9780198845355.001.0001.
Full textOkasha, Samir. Wright’s Adaptive Landscape, Fisher’s Fundamental Theorem. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198815082.003.0004.
Full textMcLarty, Colin. The Roles of Set Theories in Mathematics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0001.
Full textVon Neumann Conference on Arithmetic Fundamental Groups and noncommuta. Arithmetic Fundamental Groups and Noncommutative Algebra. American Mathematical Society, 2002.
Find full textLee, Kuen Hung. Fundamental Arithmetic: A Step-By-Step Approach. 2nd ed. Edmund Pub Co, 2002.
Find full textFaltings, Gerd. Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127. Princeton University Press, 2016.
Find full textE, Wells David, and University of New Brunswick. Department of Surveying Engineering., eds. GPS design: Undifferenced carrier beat phase observations and the fundamental differencing theorem. Fredericton, N.B: Dept. of Surveying Engineering, University of New Brunswick, 1987.
Find full textFarb, Benson, and Dan Margalit. The Dehn-Nielsen-Baer Theorem. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0009.
Full textBryant, Nerissa Bell. Mathematics in Daily Living: Fundamental Algebra (Mathematics in Daily Living). Steck-Vaughn, 1985.
Find full textGrand Unified Theorem: Discovery of the Theory of Everything and the Fundamental Building Block of Quantum Theory. Nova Science Publishers, 2004.
Find full text(Editor), S. G. Dani, and Gopal Prasad (Editor), eds. Algebraic Groups and Arithmetic (Tata Institute of Fundamental Research, Studies in Mathematics, No. 17). Narosa Publishing House, 2004.
Find full textWüstholz, Gisbert, and Clemens Fuchs, eds. Arithmetic and Geometry. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691193779.001.0001.
Full textAlgebra, Arithmetic and Geometry Mumbai 2000 (Parts I and II) (Tata Institute of Fundamental Research, Bombay// Studies in Mathematics). Narosa Pub House, 2002.
Find full textAbbes, Ahmed, and Michel Gros. Representations of the fundamental group and the torsor of deformations. Local study. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691170282.003.0002.
Full textVenkataramana, T. N., and International Conference on Cohomology o. Proceedings of the International Conference on Cohomology of Arithmetic Groups, L-Functions and Automorphic Forms, Mumbai 1998 (Tata Institute of Fundamental Research, Bombay// Studies in Mathematics). Alpha Science International, Ltd, 2002.
Find full textBrechenmacher, Frédéric. Algebraic generality versus arithmetic generality in the 1874 controversy between C. Jordan and L. Kronecker. Edited by Karine Chemla, Renaud Chorlay, and David Rabouin. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198777267.013.16.
Full textWeekly Reader Early Learning Library (Firm), ed. I know same and different =: Igual y diferente. Milwaukee, WI: Weekly Reader Early Learning Library, 2006.
Find full textNicholson, Peter. The Principles of Architecture, Containing the Fundamental Rules of the Art, in Geometry, Arithmetic, and Mensuration, with the Application of Those Rules to Practice: Volume 1. Adamant Media Corporation, 2001.
Find full textNicholson, Peter. The Principles of Architecture, Containing the Fundamental Rules of the Art, in Geometry, Arithmetic, and Mensuration, with the Application of Those Rules to Practice: Volume 2. Adamant Media Corporation, 2001.
Find full textMcDuff, Dusa, and Dietmar Salamon. Symplectic manifolds. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0004.
Full textWalsh, Bruce, and Michael Lynch. Theorems of Natural Selection: Results of Price, Fisher, and Robertson. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0006.
Full textButton, Tim, and Sean Walsh. Internal categoricity and the natural numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0010.
Full textButton, Tim, and Sean Walsh. Internal categoricity and the sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0011.
Full textButton, Tim, and Sean Walsh. Categoricity and the natural numbers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0007.
Full text