Academic literature on the topic 'Fused in Sarcoma'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fused in Sarcoma.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fused in Sarcoma"
Mackenzie, Ian R. A., and Manuela Neumann. "Fused in Sarcoma Neuropathology in Neurodegenerative Disease." Cold Spring Harbor Perspectives in Medicine 7, no. 12 (January 17, 2017): a024299. http://dx.doi.org/10.1101/cshperspect.a024299.
Full textUnderwood, Caroline I. M., Diana M. Cardona, Rex C. Bentley, Guomiao Shen, Xiaojun Feng, George Jour, and Rami N. Al-Rohil. "Epithelioid Hyalinizing Sarcoma With MGA-NUTM1 Fusion." American Journal of Clinical Pathology 154, no. 6 (September 3, 2020): 859–66. http://dx.doi.org/10.1093/ajcp/aqaa113.
Full textMatus, Soledad, Daryl A. Bosco, and Claudio Hetz. "Autophagy meets fused in sarcoma-positive stress granules." Neurobiology of Aging 35, no. 12 (December 2014): 2832–35. http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.019.
Full textSiozopoulou, Vasiliki, Evelien Smits, Koen De Winne, Elly Marcq, and Patrick Pauwels. "NTRK Fusions in Sarcomas: Diagnostic Challenges and Clinical Aspects." Diagnostics 11, no. 3 (March 9, 2021): 478. http://dx.doi.org/10.3390/diagnostics11030478.
Full textJia, Weiyan, Sang Hwa Kim, Mark A. Scalf, Peter Tonzi, Robert J. Millikin, William M. Guns, Lu Liu, et al. "Fused in sarcoma regulates DNA replication timing and kinetics." Journal of Biological Chemistry 297, no. 3 (September 2021): 101049. http://dx.doi.org/10.1016/j.jbc.2021.101049.
Full textDormann, Dorothee, and Christian Haass. "Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration." Molecular and Cellular Neuroscience 56 (September 2013): 475–86. http://dx.doi.org/10.1016/j.mcn.2013.03.006.
Full textOrozco, Denise, Sabina Tahirovic, Kristin Rentzsch, Benjamin M. Schwenk, Christian Haass, and Dieter Edbauer. "Loss of fused in sarcoma (FUS) promotes pathological Tau splicing." EMBO reports 13, no. 8 (June 19, 2012): 759–64. http://dx.doi.org/10.1038/embor.2012.90.
Full textMcAninch, Damian, and Mihaela-Rita Mihailescu. "Fused in Sarcoma (FUS) Targets Neuronal G Quadruplex Containing mRNAS." Biophysical Journal 110, no. 3 (February 2016): 240a. http://dx.doi.org/10.1016/j.bpj.2015.11.1322.
Full textChen, Chen, Xiufang Ding, Nimrah Akram, Song Xue, and Shi-Zhong Luo. "Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases." Molecules 24, no. 8 (April 24, 2019): 1622. http://dx.doi.org/10.3390/molecules24081622.
Full textKakushkin, N. "A. A. Muratov. - To the question of sarcoma transplantation to the healthy part of the body in the same patient. (Yezhenedelnik, 1895, No. 15)." Journal of obstetrics and women's diseases 9, no. 7-8 (October 22, 2020): 659. http://dx.doi.org/10.17816/jowd97-8659.
Full textDissertations / Theses on the topic "Fused in Sarcoma"
Orozco, Moisa Denise Marie. "The role of Fused in Sarcoma (FUS) in the alternative splicing of TAU." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-175578.
Full textPatienten mit neurodegenerativen Erkrankungen können an kognitivem Abbau und/oder motorische Störungen leiden, je nachdem welche Gehirnregion von dem Verlust von Neuronen betroffen ist. Da sich das Risiko einer neurodegenerativen Erkrankung mit zunehmendem Alter drastisch erhöht und wir eine Gesellschaft mit steigender Lebenserwartung haben, ist es dringend notwending, neue wirksame Behandlungsmethoden zu entwickeln, um die Situation, mit der sich Patienten, ihre Familien und die Gesellschaft konfrontiert sehen, zu erleichtern. Obwohl sich verschiedene neurodegenerative Erkrankungen wie die Alzheimer-Erkrankung (AD), Amyotrophe Lateralsklerose (ALS) oder Frontotemporale Demenz (FTD) klinisch unterscheiden, gibt es gemeinsame Pathomechanismen, wie Proteinaggregation und Störungen im RNA-Metabolismus. Bei einem Teil der ALS und FTD Patienten beobachtet man Ablagerungen aus aggregiertem Fused in Sarcoma (FUS) Protein. Des Weiteren verursachen FUS Mutationen ALS mit FUS neuronalen Aggregaten. FUS ist ein DNA/RNA-bindendes Protein, das verschiedene Schritte des RNA-Metabolismus reguliert. Die genaue Funktion von FUS und seine Zielgene in Neuronen waren jedoch bisher unbekannt. In dieser Studie habe ich die Funktion von FUS auf neuronales alternatives Spleißen mit einem Kandidaten-Ansatz untersucht, und mich insbesondere auf das Mikrotubuli-bindende Protein TAU fokussiert. Tau ist eines der bekanntesten Proteine in der Demenzforschung, da TAU Aggregate in verschiedenen sogenannten Tauopathien, insbesondere AD, gefunden wurden. Mutationen im TAU Gen MAPT, die das alternative Spleißen von TAU Exon 10 beeinflussen, können einen anderen Subtyp der FTD verursachen. Diese Studie zeigt, dass die Herunterregulierung (Gen-Knockdown) von FUS in murinen Neuronen das Überleben der Neuronen nicht beeinträchtigt, aber zu verändertem alternativen Spleißen von TAU mit einem erhöhten Einschluss von Exon 3 und Exon 10 führt und somit eine höhere Expression von den 2N und 4R TAU Isoformen verursacht. Eine wichtige Beobachtung dieser Studie war auch, dass die Expression von humanem FUS in FUS knockdown Neuronen aberrantes TAU Spleißen korrigieren kann. Dementsprechend führte auch die alleinige Überexpression von FUS zu einer verminderten Expression von 2N und 4R TAU. In Lysaten von Mausgehirnen konnte ich eine direkte Interaktion zwischen FUS und TAU RNA nachweisen, und zwar mit bevorzugter FUS Bindung nahe am regulierten TAU Exon 10 und oft an AUU-reichen RNA-Abschnitten. Da das Spleißen von TAU in Menschen und Nagetieren unterschiedlich reguliert wird, bestätigte ich mit sowohl einer menschlichen neuronalen Zelllinie als auch einem TAU-Minigen Konstrukt die Rolle von humanem FUS in TAU Exon 10 Spleißen. Um die funktionalen Konsequenzen von FUS knockdown in Neuronen zu bewerten, analysierte ich die Morphologie und Entwicklung der Axone. Obwohl Neuronen mit FUS knockdown normalen Neuriten bilden, sind ihre Axone deutlich kürzer als die der Kontroll-Neuronen. Wie auch schon in TAU/MAP1B knockout Neuronen beobachtet wurde, entwickeln FUS knockdown Neuronen Axone mit einem deutlich größeren Wachstumskegel und abnormer Zytoskelett-Organisation. Die dynamische Bildung axonaler Wachstumskegel ist ein wesentlicher Schritt in der axonalen Aufrechterhaltung und Reparatur in vivo. Insgesamt konnte diese Studie TAU als erstes physiologisches splice Zielgen von FUS in Neuronen identifizieren. Die neu entdeckte Funktion von FUS bei der Regulation des axonalen Zytoskelettes spricht für eine mögliche Rolle der veränderten axonalen Funktion beim Verlust von Neuronen in ALS/FTD Fällen mit FUS Aggregaten.
Robinson, Hannah. "Structural modifications of the RNA-binding protein, fused in sarcoma : implications for amyotrophic lateral sclerosis." Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/86494/.
Full textHofweber, Mario Verfasser], and Dorothee [Akademischer Betreuer] [Dormann. "Pathomechanisms driving phase separation and aggregation of the fused in sarcoma protein in neurodegenerative diseases / Mario Hofweber ; Betreuer: Dorothee Dormann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1174142758/34.
Full textOrozco, Moisa Denise Marie [Verfasser], and Christian [Akademischer Betreuer] Haass. "The role of Fused in Sarcoma (FUS) in the alternative splicing of TAU / Denise Marie Orozco Moisa. Betreuer: Christian Haass." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1060632667/34.
Full textHofweber, Mario [Verfasser], and Dorothee [Akademischer Betreuer] Dormann. "Pathomechanisms driving phase separation and aggregation of the fused in sarcoma protein in neurodegenerative diseases / Mario Hofweber ; Betreuer: Dorothee Dormann." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1174142758/34.
Full textHu, Quan. "The molecular pathology, genetic involvement and biochemical characteristics of fused in sarcoma (FUS) protein and chromosome 9p-linked frontotemporal lobar degeneration." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/the-molecular-pathology-genetic-involvement-and-biochemical-characteristics-of-fused-in-sarcoma-fus-protein-and-chromosome-9plinked-frontotemporal-lobar-degeneration(4ac87100-f73a-41c9-a921-f6af5d54dd27).html.
Full textPokrishevsky, Edward. "Aberrant localization of fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43 triggers misfolding of human Cu/Zn superoxide dismutase (SOD1)." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36345.
Full textSuárez, Calvet Marc. "Degeneració lobular frontotemporal: estudi clínic, neuropatològic i de biomarcadors." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/398996.
Full textThe aim of the present thesis is to study frontotemporal lobar degeneration (FTLD), a neurodegenerative disease characterised by a focal neural loss in the frontal and the temporal lobes, from different perspectives. FTLD is a very heterogeneous disease either from the clinical or the neuropathological, genetic and pathogenic perspectives. This heterogeneity makes its diagnosis challenging and its nosologic classification and pathogenesis research especially puzzling. In the present thesis, this heterogeneity is addressed through studying FTLD from different angles. First, FTLD is investigated from a clinical viewpoint: the most recent clinical criteria about the behavioural variant of FTLD (bvFTD) are evaluated through the cohort of patients followed in the Memory Unit of Hospital de la Santa Creu i Sant Pau. From a genetic perspective, specific clinical and radiological features of the FTLD patients carrying a hexanucleotide repeat expansion in the C9orf72 gene are defined. Next, and from a biomarkers angle, TDP-43 protein and its phosphorylated form (pTDP-43) are measured in blood and in cerebrospinal fluid (CSF). In the last chapter, the molecular pathogenic mechanisms of FTLD with FUS- and FET-positive inclusions (FTLD-FET) are scrutinized, in order to study the methylation pattern of the arginines present in FUS protein and how this posttranslational modification regulates the cytoplasmic-nuclear transport. Finally, a neuropathological study is performed by means of the comparison of the differences in FUS methylation pattern between FTLD-FET and amyotrophic lateral sclerosis with FUS mutations (ALS-FUS). This study provides further evidence of the differences between FTLD-FET and ALS-FUS, despite the fact that both diseases share the deposition of the protein FUS.
Gogia, Neha. "Drosophila Eye Model to Study Dorso-Ventral (DV) Patterning and Neurodegenerative Disorders." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1572279564626749.
Full textKamelgarn, Marisa Elizabeth. "MUTATIONS OF FUS CAUSE AGGREGATION OF RNA BINDING PROTEINS, DISRUPTIONS IN PROTEIN SYNTHESIS, AND DYSREGULATION OF NONSENSE MEDIATED DECAY." UKnowledge, 2019. https://uknowledge.uky.edu/toxicology_etds/27.
Full textBook chapters on the topic "Fused in Sarcoma"
Amin, Mohamed M. "Neurodegenerative Disorders." In Advances in Medical Diagnosis, Treatment, and Care, 195–216. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5282-6.ch009.
Full textTakeda, Akitoshi, and Bruce Miller. "Frontotemporal dementias." In New Oxford Textbook of Psychiatry, edited by John R. Geddes, Nancy C. Andreasen, and Guy M. Goodwin, 405–13. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198713005.003.0041.
Full text