Contents
Academic literature on the topic 'Fusion de capteurs visuels-inertiels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fusion de capteurs visuels-inertiels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Fusion de capteurs visuels-inertiels"
Manerikar, Ninad. "Fusion de capteurs visuels-inertiels et estimation d'état pour la navigation des véhicules autonomes." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4111.
Full textAccurate state estimation is a fundamental problem for the navigation of Autonomous vehicles. This is particularly important when the vehicle is navigating through cluttered environments or it has to navigate in close proximity to its physical surroundings in order to perform localization, obstacle avoidance, environmental mapping etc. Although several algorithms were proposed in the past for this problem of state estimtation, they were usually applied to a single sensor or a specific sensor suite. To this end, researchers in the computer vision and control community came up with a visual-inertial framework (Camera + Imu) that exploit the combined properties of this sensor suite to produce precise local estimates (position, orientation, velocity etc). Taking inspiration from this, my thesis focuses on developing nonlinear observers for State Estimation by exploiting the classical Riccati design framework with a particular emphasis on visual-inertial sensor fusion. In the context of this thesis, we use a suite of low-cost sensors consisting of a monocular camera and an IMU. Throughout the thesis, the assumption on the planarity of the visual target has been considered. In the present thesis, two research topics have been considered. Firstly, an extensive study for the existing techniques for homography estimation has been carried out after which a novel nonlinear observer on the SL(3) group has been proposed with application to optical flow estimation. The novelty lies in the linearization approach undertaken to linearize a nonlinear observer on SL(3), thus making it more simplistic and suitable for practical implementation. Then, another novel observer based on deterministic Ricatti observer has been proposed for the problem of partial attitude, linear velocity and depth estimation for planar targets. The proposed approach does not rely on the strong assumption that the IMU provides the measurements of the vehicle’s linear acceleration in the body-fixed frame. Again experimental validations have been carried out to show the performance of the observer. An extension to this observer has been further proposed to filter the noisy optical flow estimates obtained from the extraction of continuous homography. Secondly, two novel observers for tackling the classical problem of homography decomposition have been proposed. The key contribution here lies in the design of two deterministic Riccati observers for addressing the homography decomposition problem instead of solving it on a frame-by-frame basis like traditional algebraic approaches. The performance and robustness of the observers have been validated over simulations and practical experiments. All the observers proposed above are part of the Homography-Lab library that has been evaluated at the TRL 7 (Technology Readiness Level) and is protected by the French APP (Agency for the Protection of Programs) which serves as the main brick for various applications like velocity, optical flow estimation and visual homography based stabilization
Seba, Ali. "Fusion de données capteurs visuels et inertiels pour l'estimation de la pose d'un corps rigide." Thesis, Versailles-St Quentin en Yvelines, 2015. http://www.theses.fr/2015VERS020V/document.
Full textAbstractThis thesis addresses the problems of pose estimation of a rigid body moving in 3D space by fusing data from inertial and visual sensors. The inertial measurements are provided from an I.M.U. (Inertial Measurement Unit) composed by accelerometers and gyroscopes. Visual data are from cameras, which positioned on the moving object, provide images representative of the perceived visual field. Thus, the implicit measure directions of fixed lines in the space of the scene from their projections on the plane of the image will be used in the attitude estimation. The approach was first to address the problem of measuring visual sensors after a long sequence using the characteristics of the image. Thus, a line tracking algorithm has been proposed based on optical flow of the extracted points and line matching approach by minimizing the Euclidean distance. Thereafter, an observer in the SO(3) space has been proposed to estimate the relative orientation of the object in the 3D scene by merging the data from the proposed lines tracking algorithm with Gyro data. The observer gain was developed using a Kalman filter type M.E.K.F. (Multiplicative Extended Kalman Filter). The problem of ambiguity in the sign of the measurement directions of the lines was considered in the design of the observer. Finally, the estimation of the relative position and the absolute velocity of the rigid body in the 3D scene have been processed. Two observers were proposed: the first one is an observer cascaded with decoupled from the estimation of the attitude and position estimation. The estimation result of the attitude observer feeds a nonlinear observer using measurements from the accelerometers in order to provide an estimate of the relative position and the absolute velocity of the rigid body. The second observer, designed directly in SE (3) for simultaneously estimating the position and orientation of a rigid body in 3D scene by fusing inertial data (accelerometers, gyroscopes), and visual data using a Kalman filter (M.E.K.F.). The performance of the proposed methods are illustrated and validated by different simulation results
Gintrand, Pierre. "Estimation de l'état d'un hélicoptère par vision monoculaire en environnement inconnu." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4021.
Full textVision is the primary means for helicopter pilots to perceive and evaluate the surrounding environment, especially when navigating near terrain or close to obstacles not listed on aeronautical charts. However, despite over half a century of research into the use of vision in robotics, few of the results have been transferred technologically to aid aircraft piloting. Thanks to developments in computing resources, recent decades have seen the emergence of computer vision techniques, which now enable the processing, analysis, and understanding of digital images to extract and interpret information. For several decades, Airbus Helicopters has equipped its medium and heavy helicopter range with an autopilot system to improve flying qualities, and to offer piloting aids such as hovering and trajectory following. The company is now considering integrating visual sensors into its helicopters to enhance the robustness of its kinematic state estimation (position, speed, attitude), crucial information for the autopilot. Thus, the thesis focuses on the synthesis of nonlinear observers for state estimation of a visual-inertial system, using Riccati-type techniques to fuse visual and inertial sensors. The deterministic nature of the proposed observers has allowed determining sufficient conditions, expressed in terms of positioning and number of source points, and persistent excitation of camera motion, for which exponential and local stability is formally demonstrated. This aspect is particularly valuable in designing technological bricks intended for integration into systems subject to rigorous certification constraints. The performance of the proposed solution is compared to state-of-the-art algorithms using datasets provided by the scientific community
Nez, Alexis. "Mesure inertielle pour l'analyse du mouvement humain. Optimisation des méthodologies de traitement et de fusion des données capteur, intégration anatomique." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2273/document.
Full textTo face the limits of optoelectronic systems (heavy device, restricted measurement field), inertial sensors are a promising alternative for human motion analysis. Thanks to the latest technical advancements like sensor miniaturization, they can now work autonomously which makes possible to directly embed them on the human segments. But, as a counterpart of these developments, inertial sensor measurement still suffers from both stochastic and deterministic perturbations. The induced errors then propagate over the so-called fusion algorithm used to estimate human segment orientation. A common tool to perform such an operation is the Kalman filter that estimates unknown variables by correcting noisy measurements by the use of a dynamic model.With the aim of achieving a sufficiently accurate measurement to perform human motion analysis, various methodologies are proposed in the present work. The first part of this thesis focuses on the sensors. First, inertial sensor noises are studied and modeled in order to be integrated into the Kalman filter. Calibration processes as their effects over the measurement are for that purposed analyzed. Some recommendations are thus proposed to reach a compromise between calibration performance and complexity.In a second part, the data fusion algorithm is approached. A specific Kalman filter dedicated to human motion measurement is first proposed. Then, a recurrent problem is studied in details: the definition of the covariance matrix that represents a globalcharacterization of the measurement errors. Considering an optoelectronic system as a reference to compare inertial measurement, a method is proposed for this covariance matrix identification, which also highlights the need to address this problem rigorously.In a third part, we begin to address the use of inertial sensors for human motion analysis by focusing on models and IMU-to-segment calibration.To conclude, the benefits made by the proposed methodologies are evaluated and discussed
Makni, Aida. "Fusion de données inertielles et magnétiques pour l’estimation de l’attitude sous contrainte énergétique d’un corps rigide accéléré." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT025/document.
Full textIn this PhD. thesis we deal with attitude estimation of accelerated rigid body moving in the 3D space using quaternion parameterization. This problem has been widely studied in the literature in various application areas. The main objective of the thesis is to propose new methods for data fusion to combine inertial gyros) and magnetic measurements. The first challenge concerns the attitude estimation during dynamic cases, in which external acceleration of the body is not negligible compared to the Gravity. Two main approaches are proposed in this context. Firstly, a quatenion-based adaptive Kalman filter (q-AKF) was designed in order to compensate for such external acceleration. Precisely, a smart detector is designed to decide whether the body is in static or dynamic case. Then, the covariance matrix of the external acceleration is estimated to tune the filter gain. Second, we developed descriptor filter based on a new formulation of the dynamic model where the process model is fed by accelerometer measurements while observation model is fed by gyros and magnetometer measurements. Such modeling gives rise to a descriptor system. The resulting model allows taking the external acceleration of the body into account in a very efficient way. The second challenge is related to the energy consumption issue of gyroscope, considered as the most power consuming sensor. We study the way to reduce the gyro measurements acquisition by switching on/off the sensor while maintaining an acceptable attitude estimation. The effciency of the proposed methods is evaluated by means of numerical simulations and experimental tests
Oudet, Jean-Philippe. "Architecture distribuée pour la détection d'activité dans un Espace Intelligent." Mémoire, Université de Sherbrooke, 2011. http://savoirs.usherbrooke.ca/handle/11143/1634.
Full textHarshe, Mandar. "Analyse et conception d'un système de rééducation de membres inférieurs reposant sur un robot parallèle à câbles." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00933732.
Full text