To see the other types of publications on this topic, follow the link: Fusion energy.

Dissertations / Theses on the topic 'Fusion energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Fusion energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Xiros, Nikolaos I. "Mathematical Formulation of Fusion Energy Magnetohydrodynamics." ScholarWorks@UNO, 2017. https://scholarworks.uno.edu/td/2438.

Full text
Abstract:
Chapter 1 presents the basic principles of Controlled Thermonuclear Fusion, and the approaches to achieve nuclear fusion on Earth. Furthermore, the basic components of the Tokamak, the reactor which will house the fusion reaction, are analyzed. Finally, the chapter ends with a discussion on how the present thesis is related to the Controlled Thermonuclear Fusion. Chapter 2 introduces briefly the basic concepts of the Electromagnetic and Magnetohydrodynamic theories as well as MHD turbulence. Chapter 3 presents a first glance in OpenFOAM CFD library. Chapter 4 introduces the Orszag-Tang vortex flow, which is a benchmark test case for MHD numerical models. Also, the results obtained by the model developed in this thesis are presented and discussed. Chapter 5 describes an analytical solution method for the MHD natural convection in an internally heated horizontal shallow cavity. Also, a finite volume numerical model is presented for solving the aforementioned problem and properly validated. The results of the numerical model are compared with the analytical solutions for a range of Rayleigh and Hartmann numbers. Finally, conclusions based on this work are drawn and recommendations for future work are made.
APA, Harvard, Vancouver, ISO, and other styles
2

Raine, Mark John. "High field superconductors for fusion energy applications." Thesis, Durham University, 2015. http://etheses.dur.ac.uk/11153/.

Full text
Abstract:
The fabrication and processing by solid-state heat-treatment, mechanical ball milling and hot isostatic pressing of microcrystalline and nanocrystalline niobium carbonitride is reported. This material is subjected to a number of characterisation measurements including x-ray diffraction, resistivity, ac-susceptibility, dc-extraction and heat capacity. The resultant measurement data are used to assess the adequacy of the material’s processing and quality with respect to the fundamental superconducting characteristics, transition temperature, T_c, upper critical magnetic field, B_c2, and critical current density, J_c. It is shown that a substantial increase in B_c2 from ~ 11 T (in the microcrystalline material) to ~ 21 T (in the nanocrystalline material) has been produced. A fortyfold increase in J_c from 1.8 x 107 Am^(-2) (in microcrystalline material measured at 3 T and 6 K) to 7.4 x 108 Am^(-2) (in nanocrystalline material measured at 3 T and 5.9 K) has also been produced. These substantial increases have been made with only a 32 % reduction in T_c from ~17.6 K to ~ 11.9 K, well above the temperature of liquid helium. The accurate large quantity metrology of 10,000 Nb3Sn samples for the International Thermonuclear Experimental Reactor toroidal field coils is also reported and an overview analysis of the data provided. In particular, all seven measurement types; critical current, hysteresis loss, residual resistivity ratio, diameter, chromium plating thickness, twist pitch and copper to non-copper volume ratio are discussed in relation to the accuracy with which they were performed. The methodology in performing the heat-treatments and measurements is discussed and the detail of the necessary equipment set up is given. The results from some additional experiments that deal with the effect of heat-treatment cleanliness and sample geometry on various measurement types is provided.
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, Peter John. "Laser plasma interaction for application to fusion energy /." View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030724.133202/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Evans, Peter J., University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "Laser plasma interaction for application to fusion energy." THESIS_CSTE_SFH_Evans_P.xml, 2002. http://handle.uws.edu.au:8081/1959.7/293.

Full text
Abstract:
This thesis presents an investigation into inertial confinement fusion through mathematical models and computer simulations. Salient features affecting fusion are identified, in both energy absorption and fusion gains. Mathematical tools are applied to a directed investigation into plasma structure. Parameters such as these involved in electromagnetic energy absorption are identified first, and the next step is to model the immediate response of the plasma to this energy input, with a view to how this may be advantageous to initiating fusion. Models are developed that best suit plasma behaviour. The parameters are presented graphically against time and distance into a small plasma fuel pellet. It is noted how field density and ions form undulations through the plasma. Types of plasma fuels are discussed with regards to their key parameters. Computations are performed using the laser driven inertial energy option based on volume ignition with the natural adiabatic self-similarity compression and expansion hydrodynamics. The relative merits of each fuel are discussed against the parameters of density, volume and energy input versus fusion gains.
Master of Science (Hons)
APA, Harvard, Vancouver, ISO, and other styles
5

Davie, Christopher. "Symmetry issues in shock ignited inertial fusion energy." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25736.

Full text
Abstract:
Motivated by the shock ignition approach to improving the performance of inertial fusion targets, we make a series of studies of the stability of hydrodynamic shock waves. We first examine the behaviour of shocks moving through perturbations in background fluid in planar and 2D converging geometries, representing the ‘ignition’ shock moving through strongly perturbed material. To do this we follow the behaviour of finite amplitude perturbations on a 2D spherically converging shock wave, through convergence, reflection at its minimum radius and then into the expansion phase. We then extend this to pressure perturbations for converging shocks, representing asymmetries in the drive profile. These are then extended to 3D where we examine a uniquely 3D asymmetry, collapse and reflection of perturbed shock fronts without axial symmetry. We find that finite amplitude perturbations are transferred with little change through convergence into expansion, recovering their approximate ingoing form and find that shock fronts are robust against a range of asymmetries, specifically that the shock front is broadly stable against moderate perturbation, with only minor deviations from the symmetric behaviour. Even under fairly extreme, 3D perturbations in multiple parameters in convergent geometry the shock front remains robust and transfers with little change through convergence into expansion and recovers its approximate ingoing form. This stability of shock waves is at the root of the robustness of shock ignition and suggests this robustness is fully 3D.
APA, Harvard, Vancouver, ISO, and other styles
6

Toledano, Laredo Valerio. "Fusion of positive energy representations of LSpin₂n." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zabala, Leizuri. "Fusion energy : Critical analysis of the status and future prospects." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27059.

Full text
Abstract:
The need to make maximum use of renewable resources to the detriment of fossil fuels to achieve environmental goals with an increasing energy demand is driving research into the development of technologies to obtain energy from sources that are not currently being exploited, one of them being fusion energy. The aim of this report is to provide a general overview of fusion and to provide a critical opinion on whether fusion will become a commercial energy source in the future, and if so when. The followed methodology has been a literature review complemented by an interview to B Henric M Bergsåker, teacher and researcher at the KTH on fusion plasma physics and information person for the Swedish fusion research.In the results section the fusion physics and different technological approaches have been presented. Among the studied different projects, the ITER Tokamak magnetic reactor has been selected as the most promising of these projects, as a product of international collaboration, and it has been analyzed in more detail. The obtained results have been that fusion can be an inexhaustible, environmentally friendly and safe energy source. The first-generation fusion commercial reactors are expected to be part of the energy mix before 2100.
APA, Harvard, Vancouver, ISO, and other styles
8

Verrill, Robert William. "Positive energy representations of LσSU(2r) and orbifold fusion." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ekwevugbe, Tobore. "Advanced occupancy measurement using sensor fusion." Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/10103.

Full text
Abstract:
With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control.
APA, Harvard, Vancouver, ISO, and other styles
10

Zarkadoula, Evangelia. "Modelling of high-energy radiation damage in materials relevant to nuclear and fusion energy." Thesis, Queen Mary, University of London, 2013. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8607.

Full text
Abstract:
The objective through my PhD has been to investigate radiation damage effects in materials related to fusion and to safe encapsulation of nuclear waste, using Molecular Dynamics (MD) methods. Particularly, using MD, we acquire essential information about the multi-scale phenomena that take place during irradiation of materials, and gain access at length and time-scales not possible to access experimentally. Computer simulations provide information at the microscopic level, acting as a bridge to the experimental observations and giving insights into processes that take place at small time and length-scales. The increasing computer capabilities in combination with recently developed scalable codes, and the availability of realistic potentials set the stage to perform large scale simulations, approaching phenomena that take place at the atomistic and mesoscopic scale (fractions of m for the first time) in a more realistic way. High-energy radiation damage effects have not been studied previously, yet it is important to simulate and reveal information about the properties of the materials under extreme irradiation conditions. Large scale MD simulations provide a detailed description of microstructural changes. Understanding of the primary stage of damage and short term annealing (scale of tens of picoseconds) will lead to better understanding of the materials properties, best possible long-term use of the materials and, importantly, new routes of optimization of their use. Systems of interest in my research are candidate fusion reactor structural materials (iron and tungsten) and materials related to the radioactive waste management (zirconia). High-energy events require large simulation box length in order for the damage to be contained in the system. This was a limitation for previous simulations, which was recently shifted with my radiation damage MD simulations. For the first time high-energy radiation damage effects were simulated, approaching new energy and length scales, giving a more realistic view of processes related to fusion and to high-energy ion irradiation of material.
APA, Harvard, Vancouver, ISO, and other styles
11

Yousif, F. B. "Some atomic collisions relevant to fusion diagnostics." Thesis, Queen's University Belfast, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jacinto, Silvie Lee Lai. "The ITER fusion energy project : a case study of multilateralism." Thesis, University of Macau, 2006. http://umaclib3.umac.mo/record=b1951109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hakso, H. (Heidi). "Nuclear fusion energy and comparison of tokamak and stellarator reactors." Bachelor's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201805261943.

Full text
Abstract:
This bachelor’s thesis presents the basic principles of nuclear fusion energy, its sustainability and compares the two most prominent fusion reactors; tokamaks and stellarators. Work is done through a literature review. Topic is relevant because energy demand is increasing and environmentally friendly ways of producing energy are needed. Fusion energy could have potential to produce vast amounts of pollution free energy without the long-lived radioactive waste or the risk of runaway reactions. However, fusion reactors have not yet been able to prove their feasibility in power generation due to its challenging physics and technology. Fusion and fission are nuclear reactions. In fusion, light atoms fuse together whereas in fission heavy atoms break apart. The reactions produce energy based on the nuclear binding energy as the created atoms are more stable i.e. have a greater binding energy than the initial ones. Produced energy is related to the created mass defect between the nuclei and the separate nucleons. Fusion reactions happen inside plasma. Temperature, density and confinement of plasma, i.e. triple product, need to reach high enough values for fusion to work. Both tokamaks and stellarators use magnetic confinement as plasma is electrically charged and can be controlled with magnetic fields. Magnetic configurations set the two reactors apart. Tokamaks have toroidal and poloidal superconducting magnetic coils. They also have a transformer creating an electric current in the plasma. Their biggest advantage is their symmetrical and simple structure, but a big disadvantage is the transformer-driven current that forces tokamaks to work only in pulses. Stellarators have only magnetic coils and no current inside the plasma. To ensure plasma confinement, their structure is helically twisted and non-axisymmetric making the complicated structure their biggest disadvantage. Lack of current makes them work continuously, which is their biggest advantage. ITER’s tokamak in France and IPP’s Wendelstein 7-X stellarator in Germany show the current state of fusion research. These are used as examples in the thesis. Currently tokamaks are more advanced and closer in generating more energy than is needed to heat the plasma. As plasma physics evolves and the stellarator instabilities are fixed, their continuous operation might make them more viable for the future
Tämä kandidaatintyö esittelee ydinfuusioenergian perusperiaatteet, sen kestävyysnäkökulmat, ja vertailee kahta lupaavinta reaktoria; tokamakia ja stellaraattoria. Työ on kirjallisuuskatsaus. Aihe on ajankohtainen, sillä energiantarve kasvaa ja ympäristöystävällisempiä energiamuotoja tarvitaan. Fuusioenergialla on potentiaalia tuottaa suuria määriä päästötöntä energiaa ilman pitkäikäistä radioaktiivista jätettä tai suurien ydinonnettomuuksien riskiä. Fuusioreaktorit eivät vielä ole onnistuneet todistamaan fuusiovoimaloiden toteutettavuutta johtuen fuusion haastavasta fysiikasta ja teknologiasta. Fuusio ja fissio ovat ydinreaktioita. Fuusiossa kevyet atomit sulautuvat yhteen ja fissiossa raskaat atomit hajoavat pienemmiksi. Reaktiot tuottavat energiaa johtuen sidosenergiasta, kun syntyneet atomit ovat vakaampia eli omaavat korkeamman sidosenergian kuin alkuperäiset. Syntynyt energia voidaan laskea massavajeesta atomiytimien ja erillään olevien nukleonien välillä. Fuusioreaktiot tapahtuvat plasmassa. Plasman lämpötilan, tiheyden ja koossapitoajan eli kolmitulon tulee saavuttaa riittävän korkeat arvot, jotta fuusio voi onnistua. Tokamakit ja stellaraattorit molemmat käyttävät magneettista koossapitoa, sillä plasma on sähköisesti varautunutta ja siten sitä voidaan kontrolloida magneettikenttien avulla. Magneettien kokoonpano on reaktorien suurin eroavaisuus. Tokamakeissa on toroidaalisia ja poloidaalisia suprajohtavia magneettikeloja. Niissä on myös muuntaja, joka luo sähkövirran plasmaan. Tokamakien suurin etu on niiden symmetrinen ja yksinkertainen rakenne, mutta muuntajan tuottaman epäjatkuvan virran takia voivat ne toimia vain pulsseissa. Stellaraattorit käyttävät vain magneettikeloja, ilman sähkövirtaa plasmassa. Varmistaakseen plasman koossapidon, ovat stellaraattorit epäsymmetrisiä ja kierteisiä. Muuntajan poissaolon takia niiden suurin etu on mahdollisuus jatkuvatoimisuuteen. Suurin haitta stellaraattoreilla on kuitenkin niiden monimutkainen rakenne. ITERin tokamak Ranskassa ja IPP:n stellaraattori Wendelstein 7-X Saksassa kuvaavat hyvin fuusioreaktoreiden tutkimuksen nykytilaa. Nämä reaktorit ovat esimerkkeinä tässä työssä. Tällä hetkellä tokamakit ovat kehittyneempiä ja lähempänä tuottamaan enemmän energiaa kuin mitä plasman lämmittämiseen tarvitaan. Kun plasmafysiikka kehittyy ja stellaraattorien epävakauksia korjataan, voi jatkuvatoimisuus tehdä niistä paremman vaihtoehdon tulevaisuuteen
APA, Harvard, Vancouver, ISO, and other styles
14

Deane, G. B. "The transport of mass and energy in toroidal fusion machines." Thesis, University of Oxford, 1989. https://ora.ox.ac.uk/objects/uuid:c087aa58-7ae2-4f3c-a78e-887f1bca8b76.

Full text
Abstract:
To understand the physical mechanism underlying the cross-field transport of mass and energy in magnetoplasmas is a long-standing problem in fusion research. Woods (1987) has recently developed a second-order transport theory which has been used to explain a number of transport-related phenomena observed in tokamaks. Here, we apply second-order transport theory to the reverse field pinch (RFP) and a phenomenon observed in tokamaks known as 'snakes'. Expressions for the mass and energy confinement times in the RFP, τp and τe, are deduced and agreement with experimental results from HBTX is found. For typical operating conditions the times τp ~ 0.1ms and τe ~ 0.2ms are observed in HBTX. Second-order transport theory predicts τp ~ 0.4ms and τe ~ 0.4ms for this machine. Scaling laws for βp versus ηe,βp versus Iφ and τe versus Iφ are compared with measurements from HBTX and agree well with observation. Snakes are large density perturbations observed in JET after fuel pellet injection. Typical snakes in JET are remarkably stable and are found to have density decay times longer than predictions based on neoclassical theory (Stringer 1987). After their formation, snakes have even been observed to grow (Weller et al. 1987), which suggests the presence of an inward diffusion mechanism. There is also some evidence for a temperature depression in the snakes region. An explanation of the stability and energy balance in snakes based on second-order transport theory is proposed.
APA, Harvard, Vancouver, ISO, and other styles
15

Isacson, Max. "Studies of a neutral Higgs boson produced in gluon-gluon fusion and vector boson fusion." Thesis, Uppsala universitet, Högenergifysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-239238.

Full text
Abstract:
This paper presents an outline of the generation of mass for the massive Standard Model particles (fermions, $W^\pm$, $Z^0$) through electroweak symmetry breaking via the Higgs mechanism, and how the Higgs boson emerges from this framework. A Monte Carlo study was done on the decay $H\rightarrow\tau\tau$, with one leptonically and one hadronically decaying tau, with two different production channels for the $H$, gluon-gluon fusion (gg) and vector boson fusion (VBF), at $\sqrt s = 7\tev$ with a Higgs mass $m_H = 120\gev$. The kinematics of these two production channels were compared and it was found that the transverse momentum of muons produced in VBF were higher on average than those produced in gg. This differance was greater in muons originating from the leptonically decaying tau in the Higgs decay, than those produced by other processes in the underlying event. In the latter, however, the difference was still noticable. Jets were slightly more abundant in VBF than in gg, and were in VBF more distributed along the beam axis. The separation in pseudorapidity between the two jets with highest transverse momentum was found to be greater in VBF than in gg. An attempt to reconstruct the Higgs mass using Monte Carlo data run through a simulation of the ATLAS detector was done. The estimator used was the transverse mass of the system consisting of the visible part of the hadronically decaying tau, the lepton from the leptonically decaying tau and the total missing transvese energy. In gg the mean of the transvese mass distribution was found to be $89.26\gev$ with a root mean square uncertainty (RMS) of $23.86\gev$. In VBF the mean was found to be $85.57\gev$ with RMS $27.08\gev$.
APA, Harvard, Vancouver, ISO, and other styles
16

Samara, Mahmoud. "Literature review of sensor fusion technology : For improved occupancy information in indoor spaces." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226728.

Full text
Abstract:
As the energy consumption within the building sector is projected to steadily increase in regards to heating and cooling of the buildings, the importance of improving the principle sensor technology that obtains occupancy information to manage these control systems is prominent. This report aims to provide a basic literature review of the commercially available single-sensor technology applied for occupancy detection in buildings for control systems of heating, cooling and for monitoring the use of indoor spaces. Moreover, detailed information on the researched case studies implementing sensor fusion technology to increase detection accuracy, and the possibility of acquiring the people count within buildings will be provided and discussed. From the articles reviewed, a use of multi-sensory technology systems, and extensive data accu-mulation, the occupancy estimation accuracies are increasing as well as verified energy savings of the Heat-ing, Cooling and Air Condition (HVAC) systems in several experiments. The parameters of success rate obtained in the reviewed sensor fusion studies are occupancy estimation accuracies ranging between 73-78%, occupancy detection accuracies ranging from 74-98%, Root Mean Square Errors (RMSE) of the model performance ranging between 0.084-0.1842, and total energy savings by implementing the articles’ sensory model ranging between 21-39%.
APA, Harvard, Vancouver, ISO, and other styles
17

Frolov, Boris K. "Studies of fast electron transport in the problems of inertial fusion energy." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3229551.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2006.
Title from first page of PDF file (viewed October 18, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
18

Anyaeji, Edward. "The economic impact of fusion power in the UK's 2050 energy mix." Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/72459/.

Full text
Abstract:
Access to a safe and inexpensive source of energy is one of society’s essential needs that helps to support economic growth and development. Yet, there are a number of current challenges in the developed world that pose a threat to its energy security such as the high import dependency in Europe from politically unstable regions and the long term environmental risks from greenhouse gas (GHG) emissions. Based on scientific estimates from the United Kingdom Atomic Energy Authority’s (UKAEA) fusion research and development site, fusion power could generate high volumes of decarbonised electricity that could begin to replace electricity sources from oil, gas and coal during the middle and latter half of this century. However, fusion power currently exists in a non-commercialised state and so the use of robust techno-economic and econometric models are required in order to estimate the role that fusion power could play within the context of a future energy mix. The single equation, autoregressive distributed lag (ARDL) model of cointegration analysis is used to estimate the nuclear fission-GDP-CO2 nexus. Nuclear fission is used as the guide for fusion power due to the similarities in energy-releasing nuclear reactions and complex power plant technology. A comparative analysis between nuclear fission and environmental taxes is performed within a multivariate framework. The UK Government’s 2050 Energy Calculator is subsequently recalibrated in order to generate projections of the future energy mix with fusion power included. Multiequation econometric analyses are performed using Johansen’s maximum likelihood (ML) estimator of cointegration analysis and the vector error correction model (VECM), with the latter used to estimate projections of economic variables to 2050. The 2050 estimates are fed into a computable general equilibrium (CGE) model and shocks from the different energy mix pathways are applied to the CGE model, with policy response adjustments and wider economic implications estimated for future policy consideration. It was found that environmental taxes have a stronger long run relationship with CO2 emissions abatement than electricity generated from nuclear fission, with the implication that commercialised fusion power would need a consistent and safe level of electricity generation in order for it to have a strong long run correspondence to CO2 emissions abatement. The next empirical chapter finds that a configuration of the UK’s future energy mix that includes fusion power is able to meet the 80% emissions reduction target in 2050 based on 1990 levels, while providing a cheaper cost of the entire energy system than the expert pathways that were developed by multinational organisations. Finally, it was found that the shocks on aggregate capital investment in the CGE model from the Fusion Pathway and the respective policy response adjustments produce a more stable economic environment in 2050 than the shocks and policy response adjustments from a competing expert pathway, with the latter producing distortionary increases in overall prices, indirect taxes and its environmental tax constituent.
APA, Harvard, Vancouver, ISO, and other styles
19

Kwon, Young Woo. "Effective Fusion and Separation of Distribution, Fault-Tolerance, and Energy-Efficiency Concerns." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/49386.

Full text
Abstract:
As software applications are becoming increasingly distributed and mobile, their design and implementation are characterized by distributed software architectures, possibility of faults, and the need for energy awareness. Thus, software developers should be able to simultaneously reason about and handle the concerns of distribution, fault-tolerance, and energy-efficiency. Being closely intertwined, these concerns can introduce significant complexity into the design and implementation of modern software. In other words, to develop reliable and energy-efficient applications, software developers must understand how distribution, fault-tolerance, and energy-efficiency interplay with each other and how to implement these concerns while keeping the complexity in check. This dissertation addresses five technical issues that stand on the way of engineering reliable and energy-efficient software: (1) how can developers select and parameterize middleware to achieve the requisite levels of performance, reliability, and energy-efficiency? (2) how can one streamline the process of implementing and reusing fault tolerance functionality in distributed applications? (3) can automated techniques be developed to help transition centralized applications to using cloud-based services efficiently and reliably? (4) how can one leverage cloud-based resources to improve the energy-efficiency of mobile applications? (5) how can middleware be adapted to improve the energy-efficiency of distributed mobile applications operated over heterogeneous mobile networks? To address these issues, this research studies the concerns of distribution, fault-tolerance, and energy-efficiency as well as their interaction. It also develops novel approaches, techniques, and tools that effectively fuse and separate these concerns as required by particular software development scenarios. The specific innovations include (1) a systematic assessment of the performance, conciseness, complexity, reliability, and energy consumption of middleware mechanisms for accessing remote functionality, (2) a declarative approach to hardening distributed applications with resiliency against partial failure, (3) cloud refactoring, a set of automated program transformations for transitioning to using cloud-based services efficiently and reliably, (4) a cloud offloading approach that improves the energy-efficiency of mobile applications without compromising their reliability, (5) a middleware mechanism that optimizes energy consumption by adapting execution patterns dynamically in response to fluctuations in network conditions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Mo. "Theoretical study of non-local electron energy transport in laser fusion plasmas." Kyoto University, 2009. http://hdl.handle.net/2433/126412.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第14963号
エネ博第206号
新制||エネ||46(附属図書館)
27401
UT51-2009-M877
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 岸本 泰明, 教授 前川 孝, 教授 宮崎 健創
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
21

Christley, James Alan. "Fusion of heavy-ions at energies near the Coulomb barrier." Thesis, University of Surrey, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Eriksson, Jacob. "Calculations of neutron energy spectra from fast ion reactions in tokamak fusion plasmas." Thesis, Uppsala University, Applied Nuclear Physics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120425.

Full text
Abstract:

A MATLAB code for calculating neutron energy spectra from JET discharges was developed. The code uses the fuel ion distribution calculated by the computer code SELFO to generate the spectrum through a Monte-Carlo simulation. The calculated spectra were then compared against experimental results from the neutron spectrometer TOFOR. In the calculations, the exact orbits of the fuel ions are taken into account, in order to investigate what effects this has on the spectrum. The reason for this is that, for certain plasma heating scenarios, large populations of fast fuel ions are formed. These fast ions may have Larmor radii of the order of decimeters, which is comparable to the width of the sight line of TOFOR, and may therefore affect the recorded neutron spectrum. A JET discharge with both NBI and 3rd harmonic ICRF heating was analyzed. The results show that the details of the line of sight of the detector indeed affects the neutron spectrum. This effect is probably important for other diagnostics techniques, such as gamma-ray spectroscopy and neutral particle analysis, as well. Good agreement with TOFOR data is observed, but not for the exact same time slice of the discharge, which leaves some questions yet to be investigated.

APA, Harvard, Vancouver, ISO, and other styles
23

Impagnatiello, Andrea. "Precipitate characterization and stability in V-based alloys for nuclear fusion reactors." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/precipitate-characterization-and-stability-in-vbased-alloys-for-nuclear-fusion-reactors(62701f9e-a1a5-4d61-a238-23bd84dab51a).html.

Full text
Abstract:
The aim of this work was to investigate the precipitation and stability of nm-sized Ti oxides in vanadium-based alloys, a prime candidate material for future nuclear fusion reactors based on the magnetic confinement of the plasma. Fusion energy reproduces the nuclear reactions occurring in stars. It can potentially produce more energy than current nuclear fission power plants, and it is meant to be a solution to the clash of today's increasing energy demand with the continuous decrease of fossil-based energy sources, whose use is harmful for the environment. The operating conditions in a fusion reactor will be unprecedented in terms of ultra-high temperatures, stresses, radiation fields and very corrosive media. Only a limited number of materials may be able to withstand such combination of harsh environmental conditions, and vanadium-based alloys are among them. Recent research efforts have identified V-4Cr-4Ti as the most promising vanadium-based alloy for application in the first wall of future fusion nuclear reactors such as DEMO and beyond. The presence of TiO-type precipitates, containing relatively small amounts of C and N, strongly influences the final mechanical properties and radiation resistance of the alloy. Therefore, a thorough understanding of the precipitate structure and evolution at both relatively high temperatures and radiation dose levels is primordial to predict and optimise the final performance of the structural component in the fusion reactor. This thesis is written in alternative format and collects one article already published in Scripta Materialia, and two additional articles to be submitted to peer-review scientific journals. Atomic resolution imaging of the precipitates, coupled with chemical analysis, constitutes the main body of the first article: a novel intergrowth of the fcc Ti oxide in the bcc V matrix is revealed at the precipitate/matrix interface. The evolution of the vacancies present in the TiO precipitates above 400°C, together with the recovery of dislocations in the matrix and the formation of extra precipitates, is studied in the second article by positron annihilation spectroscopy and micro-hardness measurements. The formation of additional precipitates below 400°C induced by radiation is assessed in the third article using proton irradiation as a surrogate of neutron damage. The structure of those additional precipitates and of the dislocation loops induced by the proton bombardment is characterized by advanced analytical electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
24

Eulau, Melvin L. "The Fusion Enterprise Paradox: The Enduring Vision and Elusive Goal of Unlimited Clean Energy." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96568.

Full text
Abstract:
In an age of shrinking research and development (RandD) budgets, sustaining big science and technology (SandT) projects is inevitably questioned by publics and policy makers. The fusion enterprise is an exemplar. The effort to develop a viable system to produce unlimited and environmentally benign electricity from fusion of hydrogen isotopes has been a goal for six decades and consumed vast financial and intellectual resources in North America, Europe, and Asia. In terms of prolonged duration and sustained resource investment, the endeavor has developed into a huge fusion enterprise. Yet, no practical system for the generation of electricity has yet been demonstrated. This is the paradox at the heart of the fusion enterprise. Why, despite unfulfilled visions and broken promises, has the grand fusion enterprise endured? How can such a long-term enterprise persist in a funding culture that largely works in short-term cycles? Adapting Sheila Jasanoff's thesis of "sociotechnical imaginaries", I examine the relationship of shared and contrasting visions, co-produced expressions of nature and society, and distinctpolitical cultures in the quest for viable fusion. A systematic cultural and technological comparison of three fusion ventures, the National Spherical Torus Experiment Upgrade, the International Thermonuclear Experimental Reactor (ITER), and Wendelstein-7X, exposes how these projects and the institutions they inhabit frame the goals, risks, and benefits of the fusion enterprise and sustain a common set of fusion imaginaries. Positioned within the Princeton Plasma Physics Laboratory in the United States, the international ITER Organization sited in France, and the Max Planck Institute for Plasma Physics in Germany, the three projects are prime examples of big science and technology. Rigorous research and analysis of these cases advance the thesis of the unfulfilled utopian vision of fusion energy that has endured for more than sixty years.
Doctor of Philosophy
In an age of shrinking research and development budgets, sustaining big science and technology projects is inevitably questioned by publics and policy makers. The fusion enterprise is an exemplar. The effort to develop a viable system to produce unlimited and environmentally benign electricity from fusion of hydrogen isotopes has been a goal for six decades and consumed vast financial and intellectual resources in North America, Europe, and Asia. In terms of prolonged duration and sustained resource investment, the endeavor has developed into a huge fusion enterprise. Yet, no practical system for the generation of electricity has yet been demonstrated. This is the paradox at the heart of the fusion enterprise. Beyond articulating a possible path forward for the fusion enterprise, the intent of this study is to inform decision makers who will shape energy strategy for the second half of the twenty-first century.
APA, Harvard, Vancouver, ISO, and other styles
25

Nam, Hoseok. "Investigation of Economic Feasibility of Fusion-Biomass Hybrid System in the Future Energy Markets." Kyoto University, 2019. http://hdl.handle.net/2433/242328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yilmaz, Bulent. "Stochastic Approach To Fusion Dynamics." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608517/index.pdf.

Full text
Abstract:
This doctoral study consists of two parts. In the first part, the quantum statistical effects on the formation process of the heavy ion fusion reactions have been investigated by using the c-number quantum Langevin equation approach. It has been shown that the quantum effects enhance the over-passing probability at low temperatures. In the second part, we have developed a simulation technique for the quantum noises which can be approximated by two-term exponential colored noise.
APA, Harvard, Vancouver, ISO, and other styles
27

Seredyuk, B. "Electron capture in low energy ion-molecule collisions of relevance to astrophysical & fusion environments." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Inoue, Nicholas. "The flow production of Inertial Fusion Energy target-shells using passive, multiphase, channel-based fluidics." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/106177/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Habib, Carol. "Energy-efficient data collection and fusion in wireless body sensor networks for continuous health monitoring." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD046.

Full text
Abstract:
Plusieurs défis existent dans les réseaux de capteurs corporels sans fil tels que la collecte et la fusion de données physiologiques dans un environnement contraignant. En effet, les nœuds de capteurs sans fil ont des ressources limitées en énergie, traitement et mémoire. En outre, une grande quantité de données est collectée. Ces données sont hétérogènes, ambiguës et imprécises. Ajoutons que l'interprétation des données est influencée par plusieurs facteurs externes tels que les informations contextuelles fournies par la personne surveillée. En conséquence la prise de décisions et l'analyse des informations extraite sont influencées.Tout d'abord une technique de collecte de données est proposée. Celle-ci a pour intérêt de réduire la quantité de données collectée et la consommation d'énergie. Dans le modèle proposé, l'énergie consommée par les nœuds capteurs sans fil pour capter et pour transmettre les signes vitaux est particulièrement ciblée. Il s'agit à la fois d'un mécanisme temps-réel pour l'adaptation du taux d'échantillonnage et d'un système de détection local permettant aux nœuds de transmettre uniquement les données indiquant un changement dans l'état de santé de la personne.Deuxièmement, un modèle de fusion de données pour l'évaluation de l'état de santé de la personne surveillée est proposé. Les données fusionnées sont les signes vitaux de la personne qui proviennent de plusieurs capteurs. Ces données sont interprétées de manière humaine et sont caractérisées par l'ambiguïté et l'imprécision. Ainsi, nous proposons d'utiliser un système d'inférence floue.Ensuite, nous proposons d'évaluer l'état de santé de la personne surveillée tout en prenant en compte le contexte dans lequel elle se trouve. Étant donné que les signes vitaux de l'être humain ainsi que son contexte tels que : son activité physique, son dossier médical et ses informations personnelles sont fortement corrélés, interprétation des signes vitaux est largement influencée. Plus particulièrement, nous proposons d'utiliser les ensembles flous hésitants pour déterminer subjectivement l'intensité de l'activité physique de la personne. L'approche proposée prend en considération le profil de la personne ainsi que les caractéristiques de l'activité physique en cours.Finalement, une application médicale spécifique est ciblée. Nous proposons de détecter et d'évaluer le stress en temps réel tout en considérant la consommation d'énergie. Shimmer 3 GSR + est utilisé comme capteur sans fil pour capter le signal Photoplethysmogram (PPG) et la conductance cutanée. Une application mobile Android est développée pour extraire du signal PPG les signes vitaux qui sont corrélés au stress tels que la fréquence cardiaque, la fréquence respiratoire et la pression artérielle
Several challenges exist in Wireless Body Sensor Networks such as the data collection and fusion especially that (1) wireless sensor nodes have limited energy, processing and memory resources, (2) the amount of periodically gathered data is huge, (3) the gathered data are characterized by a heterogeneous nature and (4) the data interpretation to ensure decision-support is influenced byseveral external factors such as the provided context information of the monitored person.In this thesis, the aforementioned challenges were tackled by proposing scientific aproaches. Firstly, an energy-efficient data collection technique is proposed. This technique targets the energy consumed by biosensor nodes for sensing and transmitting vital signs. It consists of a real-timesampling rate adaptation mechanism and a local detection system which are provided at the level of the nodes. Second, in order to perform a health assessment based on the collected data, a multisensor data fusion model is proposed. In this approach, the coordinator of the network performs anassessment of the patient's health condition based on the collected measurements of his/her vital signs. Such data is interpreted in a human-reasoning way and are characterized by ambiguity and imprecision. Thus, we propose to use a Fuzzy Inference System. Then, given that vital signs are highly correlated to the context of the monitored person, a context-aware multi-sensor data fusionmodel for health assessment is proposed. The person's context include his/her physical activity status, medical record and personal information. This information highly influences the interpretation of vital signs. Hesitant fuzzy sets are used to subjectively evaluate the intensity of the person's physical activities based on his/her personal information and the activity's characteristics. Finally, a specific healthcare monitoring application is targeted. A real-time stress detection and evaluation framework is proposed while taking into consideration the energy consumption constraint. Shimmer 3 GSR+ is used as a wireless sensor node to sense the Photoplethysmogram (PPG) signal and the skin conductance. An android mobile application is developed to extract from the PPG signal stress correlated vital signs such as the heart rate, the respiration rate and the blood pressure
APA, Harvard, Vancouver, ISO, and other styles
30

Andersson, Anton. "Offline Sensor Fusion for Multitarget Tracking using Radar and Camera Detection." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208344.

Full text
Abstract:
Autonomous driving systems are rapidly improving and may have the ability to change society in the coming decade. One important part of these systems is the interpretation of sensor information into trajectories of objects. In this master’s thesis, we study an energy minimisation method with radar and camera measurements as inputs. An energy is associated with the trajectories; this takes the measurements, the objects’ dynamics and more factors into consideration. The trajectories are chosen to minimise this energy, using a gradient descent method. The lower the energy, the better the trajectories are expected to match the real world. The processing is performed offline, as opposed to in real time. Offline tracking can be used in the evaluation of the sensors’ and the real time tracker’s performance. Offline processing allows for the use of more computer power. It also gives the possibility to use data that was collected after the considered point in time. A study of the parameters of the used energy minimisation method is presented, along with variations of the initial method. The results of the method is an improvement over the individual inputs, as well as over the real time processing used in the cars currently. In the parameter study it is shown which components of the energy function are improving the results.
Mycket resurser läggs på utveckling av självkörande bilsystem. Dessa kan komma att förändra samhället under det kommande decenniet. En viktig del av dessa system är behandling och tolkning av sensordata och skapande av banor för objekt i omgivningen. I detta examensarbete studeras en energiminimeringsmetod tillsammans med radar- och kameramätningar. En energi beräknas för banorna. Denna tar mätningarna, objektets dynamik och fler faktorer i beaktande. Banorna väljs för att minimera denna energi med hjälp av gradientmetoden. Ju lägre energi, desto bättre förväntas banorna att matcha verkligheten. Bearbetning sker offline i motsats till i realtid; offline-bearbetning kan användas då prestandan för sensorer och realtidsbehandlingen utvärderas. Detta möjliggör användning av mer datorkraft och ger möjlighet att använda data som samlats in efter den aktuella tidpunkten. En studie av de ingående parametrarna i den använda energiminimeringsmetoden presenteras, tillsammans med justeringar av den ursprungliga metoden. Metoden ger ett förbättrat resultat jämfört med de enskilda sensormätningarna, och även jämfört med den realtidsmetod som används i bilarna för närvarande. I parameterstudien visas vilka komponenter i energifunktionen som förbättrar metodens prestanda.
APA, Harvard, Vancouver, ISO, and other styles
31

François-Martin, Claire. "Mesure expérimentale de l'énergie d'activation de la fusion de membranes lipidiques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066160/document.

Full text
Abstract:
In vivo, la fusion membranaire ne doit pas avoir lieu spontanément. C’est pourquoi ce processus présente une barrière énergétique conséquente qui est surmontée grâce à l'action de multiples protéines. Même si la fusion biologique est très complexe, son résultat est la coalescence des deux bicouches lipidiques qui forment la matrice des membranes impliquées. L'énergie nécessaire à la perturbation de l'arrangement en bicouche lors de leur fusion doit donc être semblable à celle intervenant dans la fusion biologique. Dans le but d'estimer l’énergie d’activation de la fusion biologique, nous avons établi un protocole expérimental permettant de déterminer l’énergie d’activation et le facteur d’Arrhenius de la réaction, grâce à la loi d’Arrhenius. Les surfaces relatives occupées par la tête polaire et les queues hydrophobes d’un lipide lui confèrent une courbure préférentielle, dite courbure spontanée. En étudiant des membranes présentant des compositions lipidiques diverses, j’ai montré qu’une inadéquation entre la courbure de la membrane et la courbure spontanée du lipide affectait à la fois le facteur d’Arrhenius et l’énergie d’activation. Une courbure plus négative génère plus de défauts à la surface de la membrane « plate », ce qui augmente la fréquence de la nucléation de la fusion et accroît le facteur d’Arrhenius. Au cours du processus de fusion, la géométrie des membranes est modifiée et celle-ci présente de régions de fortes courbures. Une inadéquation entre la courbure spontanée du lipide et celle qu’il devrait adopter pour que la fusion soit accomplie peut inhiber la fusion et donc faire augmenter l’énergie d’activation
In vivo, membrane fusion must not occur spontaneously. Thus, membrane fusion requires a large activation energy that is overcome through the action of multiple proteins. Even though biological fusion is very complex, it results in the coalescence of both lipid bilayers that constitute the cores of the involved membranes. Therefore, the activation energy that is necessary to disrupt the leaflet arrangement during lipid bilayer fusion should be similar to that of in vivo membrane fusion. In order to approach biological membrane fusion’s activation energy, we developed an experimental protocol which allows determining the activation energy and the Arrhenius factor of the reaction, thanks to Arrhenius’ law. The relative areas occupied by the polar head and hydrophobic tails of a lipid confers to it a preferential curvature, called spontaneous curvature. Investigating membranes with several lipid compositions, I found that a mismatch between the membrane curvature and the spontaneous curvature of the lipid affects both the Arrhenius factor and the activation energy. A more negative curvature generates more hydrophobic defects in the “flat” membrane which leads to an increase in the frequency of fusion nucleation, i.e. a larger Arrhenius factor. During the fusion process, membrane shapes are modified and adopt large positive and negative curvatures, each leaflet having opposite curvatures. A mismatch between the spontaneous curvature of the lipid and the one it should adopt in order for fusion to proceed can inhibit the process of fusion, i.e increase its activation energy
APA, Harvard, Vancouver, ISO, and other styles
32

Ipatova, Iuliia. "Nanoscale structure damage in irradiated W-Ta alloys for nuclear fusion reactors." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/nanoscale-structure-damage-in-irradiated-wta-alloys-for-nuclear-fusion-reactors(43a96ffe-89ae-4254-8bc5-a881a87d4b6b).html.

Full text
Abstract:
In this project, we have assessed the structural tolerance of advanced refractory alloys to simulated nuclear fusion reactor environments, by using intense proton beams to mimic fusion neutron damage and analysing the proton damaged structures using in-situ/ex-situ transmission electron microscopy and nano-hardness measurements. Refractory metals such as tungsten or tantalum, and their binary alloy combinations, are considered as promising structural materials to withstand the unprecedented high heat loads and fast neutron/helium fluxes expected in future magnetically-confined fusion reactors. Tungsten is currently the frontrunner for the production of plasma-facing components for fusion reactors. The attractiveness of tungsten as structural material lies in its high resistance to plasma-induced sputtering, erosion and radiation-induced void swelling, together with its thermal conductivity and high-temperature strength. Unfortunately, the brittle nature of tungsten hampers the manufacture of reactor components and can also lead to catastrophic failure during reactor operations. We have focused on two potential routes to enhance the ductility of tungsten-containing materials, namely alloying tungsten with controlled amounts of tantalum, and using alternatively tantalum-based alloys containing specific tungsten additions, either as a full-thickness structural facing material or as a coating of first wall reactor components. The aim was to investigate the formation and evolution of radiation-induced damaged structures in these material solutions and the impact of those structures on the hardness of the material. The main results of this work are: (1) the addition of 5wt%Ta to W leads to saturation in the number density and average dimensions of the radiation-induced a/2 dislocation loops formed at 350C, whereas in W the loop length increases progressively and evolves into dislocation strings, and later into hydrogen bubbles and surface blisters, (2) the recovery behaviour of proton irradiated W5wt.%Ta alloy is characterized by dislocation loop growth at 600-900C, whereas voids form at 1000C by either vacancy absorption or loop collapse, (3) the presence of radiation-induced a loops at 590C in Ta hinders the formation and ordering of voids observed with increasing damage levels at 345C, (4) the addition of 5-10wt.%W to Ta delays the evolution of a/2 dislocation loops with increasing damage levels, and therefore the appearance of random voids. These results expand the composition palette available for the safe selection of refractory alloys for plasma facing components with enhanced, or at least predictable, tolerance to the heat-radiation flux combinations expected in future nuclear fusion plants.
APA, Harvard, Vancouver, ISO, and other styles
33

Hua, Xiaoben, and Yuxia Yang. "A Fusion Model For Enhancement of Range Images." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2203.

Full text
Abstract:
In this thesis, we would like to present a new way to enhance the “depth map” image which is called as the fusion of depth images. The goal of our thesis is to try to enhance the “depth images” through a fusion of different classification methods. For that, we will use three similar but different methodologies, the Graph-Cut, Super-Pixel and Principal Component Analysis algorithms to solve the enhancement and output of our result. After that, we will compare the effect of the enhancement of our result with the original depth images. This result indicates the effectiveness of our methodology.
Room 401, No.56, Lane 21, Yin Gao Road, Shanghai, China
APA, Harvard, Vancouver, ISO, and other styles
34

Link, Anthony John. "Specular Reflectivity and Suprathermal Electron Measurements from Relativistic Laser Plasma Interactions." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1268149986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jiang, Sheng. "Processing rate and energy consumption analysis for additive manufacturing processes : material extrusion and powder bed fusion." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111753.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 111-116).
Additive technologies have given birth to an expanding industry now worth 5.1 billion dollars. It has been adopted widely in design and prototyping as well as manufacturing fields. Compared to conventional technologies, additive manufacturing technologies provides opportunity to print unique complex-shaped geometries. However, it also suffers from slow production rate and high energy consumption. Improving the rate and energy becomes an important issue to make additive manufacturing competitive with conventional technologies. Among all the different limiting factors including printing strategy, heat transfer and mechanical movement limitations, heat transfer is the fundamental limiting barrier preventing further improvement the production rate. This thesis looks at the heat transfer mechanisms in material extrusion and powder bed fusion processes. In all the models developed for these two processes, processing rate is bounded by an adiabatic rate limit at which all the input energy is perfectly utilized to heat up the material to its molten/flowable state. In material extrusion, fused deposition technology suffers low throughput due to poor conductive heat transfer, big area additive manufacturing technology achieves high throughput by introducing viscous heating at the cost of resolution. In powder bed fusion, due to the intensive laser heating, the process window is limited to ensure high density material while avoid excessive evaporation. Further study quantifies the inefficiency from heat transfer mechanisms which leads to lower processing rates than the adiabatic rate limit. Energy consumption for material extrusion and powder bed fusion machines are reviewed to evaluate significance of energy consumed to heat up the material. For fused deposition technology, most of the energy is consumed by environment heating; while for powder bed fusion technology, laser unit takes the most energy. Life cycle energy consumption for products made with powder bed fusion process is compared with same/similar parts made from conventional manufacturing processes to explore scenarios in which manufacturing with additive technologies is less energy intensive.
by Sheng Jiang.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
36

Hariharan, Srikanth. "Communication-Efficient Convergecasting for Data Fusion in Wireless Sensor Networks." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1317672795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Frosin, Catalin. "The 16O+ 12C reaction at 90.5, 110 and 130 MeV beam energy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13511/.

Full text
Abstract:
Questo lavoro di tesi è inserito in uno studio, nell'ambito della collaborazione NUCL-EX, delle collisioni tra ioni pesanti per indagare le proprieta statistiche e la struttura della materia nucleare per sistemi con massa A<40. In particolare è stata studiata la reazione 16O+12C, ad energie di fascio di 90.5 MeV, 110 MeV e 130 MeV. Lo scopo della misura è quello di studiare il meccanismo di fusione-evaporazione e le possibili deviazioni da un decadimento puramente statistico del nucleo composto (28Si) che si viene a formare. Il confronto tra i dati sperimentali e quelli ottenuti da una previsione basata sul modello statistico Hauser-Feschbach, ottimizzato per lo studio di nuclei leggeri (HFl), è in grado di fornire indicazioni su effetti di struttura come già evidenziato in passato dalla collaborazione in reazioni analoghe. Questi sono principalmente legati nel nostro caso alla possibile struttura a cluster di particelle alfa che persistono oltre le soglie di emissione di particella. La misura è stata effettuata presso i Laboratori Nazionali di Legnaro sfruttando il fascio fornito da un acceleratore Tandem XTU e l'apparato sperimentale formato dai rivelatori GARFIELD e Ring Counter (RCo). L'analisi si è concentrata sia sullo studio di osservabili inclusivi come le distribuzioni energetiche e angolari delle particelle emesse che di osservabili esclusivi come la probabilità di decadimento in canali specifici. Questi risultati preliminari ottenuti per la reazione 16O+12C hanno in effetti evidenziato la presenza di effetti di struttura legate all'emissione di cluster-alfa, in particolare quando il residuo e un nucleo di carica pari. Si discute anche della dipendenza dall'energia incidente, e quindi dall'energia di eccitazione del 28Si, di questi effetti. In conclusione si indicano gli aspetti da investigare con maggior dettaglio per ottenere risultati piu consolidati e cercare di definire le cause di queste deviazioni dal modello statistico.
APA, Harvard, Vancouver, ISO, and other styles
38

Okino, Fumito. "Study on the Instability Analysis of the Liquid Metal and Application for the Fusion Energy Conversion System." Kyoto University, 2014. http://hdl.handle.net/2433/192209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Managlia, Maria Vittoria. "Study of 18O+12,13C fusion-evaporation reactions with the GARFIELD array." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23932/.

Full text
Abstract:
Non statistical effects in the emission of light charged particles from fusion-evaporation nuclear reactions are known for light and medium mass nuclei. Cases previously reported by the NUCL-EX collaboration show discrepancies between experimental data and statistical calculations in decay channels with even residues, possibly due to alpha clusterization. This thesis is focused on the analysis of an experimental campaign carried out at the Legnaro National Laboratories with the GARFIELD+RCo setup to further investigate these topics. The studied systems are: 18O+13C at 112.5 MeV and 18O+12C at 122 and 300 MeV. This thesis work covers the various steps of a typical nuclear experiment conducted with the GARFIELD array. After data taking, preliminary experimental data have been reconstructed through data cleaning, calibration and particle identification. Being the experimental data reconstruction still ongoing, no final experimental reconstructed data have been reported. Nonetheless, simulated data by Monte Carlo statistical decay code have been analysed to investigate the evolution of fusion-evaporation processes from a statistical point of view. The analysis has been focused on the study of global observables like total charge and multiplicity and on single-particle observables like energy spectra and angular distributions. GEMINI++ statistical decay code simulating the fragment emission from a hot source has been considered in the study of the 122 MeV reaction and for a direct comparison of the three reactions. Finally, the HFl statistical code conceived by the collaboration for the light nuclei decay and containing the details of the known excited levels has been compared with GEMINI++. This thesis work paves the way for further studies on the reconstructed data to highlight possible agreements with theoretical models.
APA, Harvard, Vancouver, ISO, and other styles
40

Charry, León Carlos Humberto. "Numerical simulation of water-cooled sample holders for high-heat flux testing of low-level irradiated materials." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53100.

Full text
Abstract:
The promise of a vast source of energy to power the world and protect our planet using fusion technology has been the driving force for scientists and engineers around the globe for more than sixty years. Although the materialization of this ideal still in the distance, multiple scientific and technological advances have been accomplished, which have brought commercial fusion power closer to a reality than it has ever been. As part of the collaborative effort in the pursuit of realizable fusion energy, the International Thermonuclear Experimental Reactor (ITER) is being developed by a coalition of nations of which the United States is a part of. One critical technological challenge for ITER is the development of adequate plasma facing materials (PFMs) that can withstand the strenuous conditions of operation. To date, high heat flux (HHF) testing has been conducted mainly on non-irradiated specimens due to the difficulty of working with radioactive specimens, such as instrument contamination. In this thesis, the new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL), in which the HHFs are provided by water-wall plasma-arc lamps (PALs), is considered for neutron-irradiated specimens, especially tungsten. The facility is being used to test irradiated plasma-facing components materials for magnetic fusion reactors as part of the US-Japan plasma facing components evaluation by tritium plasma, heat and neutron irradiation experiments (PHENIX). In order to conduct HHF testing on the PFMs various sample holders designs were developed to accommodate radioactive specimens during HHF testing. As part of the effort to design sample holders that are compatible with the IMTS facility, numerical simulations were performed for different water-cooled sample holder designs with the commercial computational fluid dynamics (CFD) software package, ANSYS™ FLUENT®. The numerical models are validated against experimental temperature measurements obtained from the IMTS facility. These experimentally validated numerical models are used to assess the thermal performance of two sample holder designs and establish safe limits for HHF testing under various operating conditions. The limiting parameter for the current configuration was determined for each sample holder design. For the Gen 1 sample holder, the maximum temperature reached within the Copper rod limits the allowable incident heat flux to about 6 MW/m². In the case of the Gen 2 sample holder, the maximum temperature reached within the Molybdenum clamping disk limits the allowable incident heat flux to about 5 MW/m². In addition, the numerical model are used to parametrically investigate the effect of the operating pressure, mass flow rate, and incident heat flux on the local heat flux distributions and peak surface temperatures. Finally, a comparative analysis is conducted to evaluate the advantages and disadvantages associated with the main design modifications between the two sample holder models as to evaluate their impact in the overall thermal performance of each sample holder in order to provide conclusive recommendations for future sample holder designs.
APA, Harvard, Vancouver, ISO, and other styles
41

McKay, Abe. "Floatovoltaics: Quantifying the Benefits of a Hydro-Solar Power Fusion." Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/pomona_theses/74.

Full text
Abstract:
To slow climate change, humans should take immediate and widespread action. One way to slow climate change is by switching to switch to renewable power plants such as solar fields. Recently, pioneering companies have built solar fields on water bodies. This study found that such a pairing of water and solar could increase production efficiency by 8-10% through panel cooling, save millions of liters of water from evaporation, and produce energy with under-utilized space.
APA, Harvard, Vancouver, ISO, and other styles
42

Lundberg, Martin. "Implementation of Fast Real-Time Control of Unstable Modes in Fusion Plasma Devices." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329243.

Full text
Abstract:
In recent years, multi-core graphics processing units (GPUs) have been increasingly used by researchers for other purposes than rendering graphics. This thesis presents the implementation of GPU computing for real-time control of plasma instabilities known as resistive wall modes at the EXTRAP T2R fusion plasma device. A NVIDIA GPU is installed in the device plasma control system. Using the CUDA parallel computing platform, PID and LQG control algorithms are developed for the GPU. It is shown that computation times decrease with up to 80 % for the LQG algorithm and 33 % for the PID algorithm if computations in the control system are shifted from the central processing unit (CPU) to the GPU. The gains of GPU utilization are limited by latencies introduced by the CPU-GPU interaction. To better exploit the potential of the GPU, a zero-copy method is proposed, in which the GPU is allowed to perform read and write operations on CPU memory.
APA, Harvard, Vancouver, ISO, and other styles
43

Yar, Mazher Ahmed. "Development of Nanostructured Tungsten Based Composites for Energy Applications." Doctoral thesis, KTH, Funktionella material, FNM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101319.

Full text
Abstract:
Tungsten (W) based materials can be used in fusion reactors due to several advantages. Different fabrication routes can be applied to develop tungsten materials with intended microstructure and properties for specific application including nanostructured grades. Therein, innovative chemical routes are unique in their approach owing numerous benefits. This thesis summarizes the development of W-based composites dispersed-strengthened by rare earth (RE) oxides and their evaluation for potential application as plasma facing armour material to be used in fusion reactor. Final material development was carried out in two steps; a) fabrication of nanostructured metallic tungsten powder dispersed with RE-oxides and b) powder sintering into bulk oxide-dispersed strengthened (ODS) composite by spark plasma process. With the help of advanced characterization tools applied at intermediate and final stages of the material development, powder fabrication and sintering conditions were optimized. The aim was to achieve a final material with a homogenous fine microstructure and improved properties, which can withstand under extreme conditions of high temperature plasma. Two groups of starting materials, synthesized via novel chemical methods, having different compositions were investigated. In the first group, APT-based powders doped with La or Y elements in similar ways, had identical particles’ morphology (up to 70 μm). The powders were processed into nanostructured composite powders under different reducing conditions and were characterized to investigate the effects on powder morphology and composition. The properties of sintered tungsten materials were improved with dispersion of La2O3 and Y2O3 in the respective order. The oxide dispersion was less homogeneous due to the fact that La or Y was not doped into APT particles. The second group, Ydoped tungstic acid-based powders synthesized through entirely different chemistry, contained nanocrystalline particles and highly uniform morphology. Hydrogen reduction of doped-tungstic acid compounds is complex, affecting the morphology and composition of the final powder. Hence, processing conditions are presented here which enable the separation of Y2O3 phase from Y-doped tungstic acid. Nevertheless, the oxide dispersion reduces the sinterability of tungsten powders, the fabricated nanostructured W-Y2O3 powders were sinterable into ultrafine ODS composites at temperatures as low as 1100 °C with highly homogeneous nano-oxide dispersion at W grain boundaries as well as inside the grain. The SPS parameters were investigated to achieve higher density with optimum finer microstructure and higher hardness. The elastic and fracture properties of the developed ODS-W have been investigated by micro-mechanical testing to estimate the materials’ mechanical response with respect to varying density and grain size. In contrast from some literature results, coarse grained ODS-W material demonstrated better properties. The developed ODS material with 1.2 Y2O3 dispersion were finally subjected to high heat flux tests in the electron beam facility “JUDITH-1”. The samples were loaded under ELM-like thermal-shocks at varying base temperatures up to an absorbed power density of 1.13 GW/m2, for armour material evaluation. Post mortem characterizations and comparison with other reference W grades, suggest lowering the oxide contents below 0.3 wt. % Y2O3. As an overview of the study conducted, it can be concluded that innovative chemical routes can be potential replacement to produce tungsten based materials of various composition and microstructure, for fusion reactor applications. The methods being cheap and reproducible, are also easy to handle for large production at industrial scale.

QC 20120827

APA, Harvard, Vancouver, ISO, and other styles
44

He, Bo. "High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century." Doctoral thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3781.

Full text
Abstract:

Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.

Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.

Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.

The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.

Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.

The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.

Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English

APA, Harvard, Vancouver, ISO, and other styles
45

Romero, Daniela. "Simulation of Higgs boson pair production in Vector Boson Fusion at the LHC." Thesis, Uppsala universitet, Högenergifysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-433554.

Full text
Abstract:
MadGraph5 is used to generate events with Higgs boson pairs from vector boson fusion (VBF) at leading-order (LO) and next-to-leading-order (NLO) accuracy in QCD. The simulations are used to compute fiducial cross-sections in proton-proton collisions at a centre-of-mass energy of 13 TeV, using several kinematic cuts on the outgoing jets, e.g. the jet transverse momenta and pseudorapidity. The resulting cross-sections for NLO and LO are compared and their ratio,  the K-factor, is calculated for every kinematic cut. An attempt is made to extend the NLO simulation for non-Standard Model (SM) couplings between two vector bosons and two Higgs bosons (VVHH), however the corresponding model was found to be only compatible with LO accuracy in QCD.
APA, Harvard, Vancouver, ISO, and other styles
46

Rizzo, Carmelo. "Symmetry Energy Effects in Low Energy Heavy Ion Collisions with Exotic Beams." Thesis, Università degli Studi di Catania, 2011. http://hdl.handle.net/10761/124.

Full text
Abstract:
We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. The evolution of the system is described by a Stochastic Mean Field transport equation (SMF), where two parameterizations for the density dependence of symmetry energy (Asysoft and Asystiff) are implemented, allowing one to explore the sensitivity of the results to this ingredient of the nuclear interaction. We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the gamma yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel. We will focus on the interplay between reaction mechanisms, fusion vs. break-up, that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The new method described here, based on the event by event evolution of phase space Quadrupole collective modes will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, in the Asysoft choice. A collective charge equilibration mechanism (the Dynamical Dipole) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation. Finally we investigate the effect of the mass asymmetry in the entrance channel for systems with the same overall isospin content and similar initial charge asymmetry. As expected we find reduced fusion probabilities for the more mass symmetric case, while the DDR strength appears not much affected. This is a nice confirmation of the prompt nature of such collective isovector mode.
APA, Harvard, Vancouver, ISO, and other styles
47

Casey, Daniel Thomas. "Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76813.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 139-148).
A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from inertial confinement fusion (ICF) implosions. Using the MRS, the down-scattered neutron (DSn) spectrum has been used to infer the areal density ([rho]R) of ICF implosions for the first time. The DSn technique is essential for diagnosing high [rho]R (>180mg/cm²) cryogenic deuterium-tritium (DT) implosions, where most other methods fail. The MRS has helped to guide the cryogenic campaign toward the highest [rho]Rs ever achieved at OMEGA. In addition, the MRS is currently being used to diagnose the DSn spectrum from cryogenic implosions at the NIF during the beginning phases of the National Ignition Campaign (NIC). MRS data have already been essential for tuning these implosions to the highest [rho]Rs ever achieved in an ICF implosion (>1 g/cm²), and thus for guiding the NIC toward the realization of thermonuclear ignition. The first measurements of the T(t,2n)⁴He (TT) neutron spectrum in DT implosions at OMEGA have also been conducted using the MRS. The TT-neutron (TTn) spectrum was measured at low reactant central-mass energies of ~23 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, which is in contrast to the results obtained in higher energy accelerator experiments. Measurements of the TTn and DD proton yields were also conducted and compared to the DT neutron yield in DT implosions. From these measurements, it is concluded that the DD yield is anomalously low and the TTn yield is anomalously high, relative to the DT yield. These results have been explained by a stratification of the fuel in the core of an ICF implosion.
by Daniel Thomas Casey.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
48

Soudens, Franschke A. "A modified Adams fusion method for the synthesis of binary metal oxide catalysts for the oxygen evolution reaction." University of Western Cape, 2020. http://hdl.handle.net/11394/8231.

Full text
Abstract:
>Magister Scientiae - MSc
The majority of the global energy is sourced from conventional fossil fuels. The high demand for energy is accelerating along with the depletion of these fossil fuels. Hence, the shift to renewable energy sources and technology becomes indispensable. Hydrogen is considered a promising alternative to fossil fuels. Polymer electrolyte membrane water electrolysers offer an environmentally friendly technique for the production of hydrogen from renewable energy sources. However, the high overpotential and acidic environment at the anode is one of the challenges faced by polymer electrolyte membrane water electrolysers. This harsh environment requires distinct electrocatalysts which currently consist of expensive precious metals such as Ir, Ru and their oxides.
APA, Harvard, Vancouver, ISO, and other styles
49

Gonçalves, Dayane Oliveira. "Fast online filtering based on data fusion of two highly segmented detectors." Universidade Federal de Juiz de Fora (UFJF), 2017. https://repositorio.ufjf.br/jspui/handle/ufjf/5435.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-07-04T20:35:11Z No. of bitstreams: 1 dayaneoliveiragoncalves.pdf: 5780108 bytes, checksum: 66585bbc9ff0f98a7f32499de344449c (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-08T14:48:18Z (GMT) No. of bitstreams: 1 dayaneoliveiragoncalves.pdf: 5780108 bytes, checksum: 66585bbc9ff0f98a7f32499de344449c (MD5)
Made available in DSpace on 2017-08-08T14:48:18Z (GMT). No. of bitstreams: 1 dayaneoliveiragoncalves.pdf: 5780108 bytes, checksum: 66585bbc9ff0f98a7f32499de344449c (MD5) Previous issue date: 2017-04-11
O calorímetro de Telhas (TileCal) é o calorímetro hadrônico central de um dos experimentos do Grande Colisor de Hádrons (LHC), o ATLAS. O TileCal fornece medidas de energia finamente segmentadas (10.000 canais de leitura) para as partículas incidentes no detector. Análises realizadas nos dados resultantes de colisões de partículas constataram que utilizar as informações da camada radial externa do TileCal, em coincidência com as câmaras de múons (MS) do ATLAS, pode proporcionar uma redução de falsos sinais de trigger (filtragem online) de múons gerados pelas iteração de prótons de baixo momento, na blindagem do feixe do LHC, com o MS. O projeto TileMuon foi desenvolvido para este propósito e sua principal atividade, no programa de atualização ATLAS, é habilitar o TileCal para fornecer as informações de trigger para a primeira etapa de filtragem online para a identificação de múons no ATLAS. Esta dissertação apresenta o estudo, o desenvolvimento e a implementação de uma técnica para a identificação de múons no contexto TileMuon. Técnicas de estimação encontradas na literatura foram aplicadas no contexto do projeto e comparadas. Os resultados para dados experimentais mostraram que o método para a identificação de múons, baseado no filtro casado para ruído gaussiano, obteve o melhor desempenho, em termos de erro de detecção, bem como viabilidade de implementação online, e foi a técnica escolhida para a aplicação.
The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy measurements for incident particles. Information from TileCal’s outermost radial layer in coincidence with the ATLAS muon chambers can provide a reduction of the fake muon triggers due to slow charged particles (typically protons). The TileMuon project was development aims this purpose and its main activity of the Tile-Muon Trigger in the ATLAS upgrade program is to install and to activate the TileCal signal processor module for providing trigger inputs to the Level-1 Muon Trigger. This dissertation presents the study, the development and the implementation of the Muon identification techniqueinthe TileMuon context. Amplitude estimation techniques found in the literature were applied to the problem and confronted against each other. The results for experimental data shown that the Muon identification based on the maximum likelihood for Gaussian noise achieved the best performance in terms of detection error as well as online implementation feasibility, and it has been the chosen technique for the application.
APA, Harvard, Vancouver, ISO, and other styles
50

Mirzaei, Golrokh. "Data Fusion of Infrared, Radar, and Acoustics Based Monitoring System." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396564236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography