To see the other types of publications on this topic, follow the link: Fuze membran.

Journal articles on the topic 'Fuze membran'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fuze membran.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Brukman, Nicolas G., Berna Uygur, Benjamin Podbilewicz, and Leonid V. Chernomordik. "How cells fuse." Journal of Cell Biology 218, no. 5 (April 1, 2019): 1436–51. http://dx.doi.org/10.1083/jcb.201901017.

Full text
Abstract:
Cell–cell fusion remains the least understood type of membrane fusion process. However, the last few years have brought about major advances in understanding fusion between gametes, myoblasts, macrophages, trophoblasts, epithelial, cancer, and other cells in normal development and in diseases. While different cell fusion processes appear to proceed via similar membrane rearrangements, proteins that have been identified as necessary and sufficient for cell fusion (fusogens) use diverse mechanisms. Some fusions are controlled by a single fusogen; other fusions depend on several proteins that either work together throughout the fusion pathway or drive distinct stages. Furthermore, some fusions require fusogens to be present on both fusing membranes, and in other fusions, fusogens have to be on only one of the membranes. Remarkably, some of the proteins that fuse cells also sculpt single cells, repair neurons, promote scission of endocytic vesicles, and seal phagosomes. In this review, we discuss the properties and diversity of the known proteins mediating cell–cell fusion and highlight their different working mechanisms in various contexts.
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, C., K. Scott, Q. Li, J. Yang, and X. Wu. "A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells." Fuel Cells 13, no. 2 (December 19, 2012): 118–25. http://dx.doi.org/10.1002/fuce.201200149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiatkittikul, P., T. Nohira, and R. Hagiwara. "Advantages of a Polyimide Membrane Support in Nonhumidified Fluorohydrogenate-Polymer Composite Membrane Fuel Cells." Fuel Cells 15, no. 4 (February 11, 2015): 604–9. http://dx.doi.org/10.1002/fuce.201400150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Epping Martin, K., and J. P. Kopasz. "The U.S. DOEs High Temperature Membrane Effort." Fuel Cells 9, no. 4 (August 2009): 356–62. http://dx.doi.org/10.1002/fuce.200800165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leimin, X., L. Shijun, Y. Lijun, and L. Zhenxing. "Investigation of a Novel Catalyst Coated Membrane Method to Prepare Low-Platinum-Loading Membrane Electrode Assemblies for PEMFCs." Fuel Cells 9, no. 2 (April 2009): 101–5. http://dx.doi.org/10.1002/fuce.200800114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yin, K. M., and C. P. Chang. "Effects of Humidification on the Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells at Relatively High Cell Temperatures." Fuel Cells 11, no. 6 (November 17, 2011): 888–96. http://dx.doi.org/10.1002/fuce.201100041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, H., T. Zhang, J. Wang, F. Pei, Y. He, and J. Liu. "Enhanced Proton Conductivity of Sulfonated Poly(ether ether ketone) Membrane Embedded by Dopamine-Modified Nanotubes for Proton Exchange Membrane Fuel Cell." Fuel Cells 13, no. 6 (October 2, 2013): 1155–65. http://dx.doi.org/10.1002/fuce.201300130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meemuk, C., and S. Chirachanchai. "Layer-by-layer Proton Donor and Acceptor Membrane for an Efficient Proton Transfer System in a Polymer Electrolyte Membrane Fuel Cell." Fuel Cells 18, no. 2 (April 2018): 181–88. http://dx.doi.org/10.1002/fuce.201700223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Panchenko, U., T. Arlt, I. Manke, M. Müller, D. Stolten, and W. Lehnert. "Synchrotron Radiography for a Proton Exchange Membrane (PEM) Electrolyzer." Fuel Cells 20, no. 3 (February 17, 2020): 300–306. http://dx.doi.org/10.1002/fuce.201900055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

QUAN QI, BAO, SPENCER W. BEASLEY, ANDREW K. WILLIAMS, and FRANCIS FRIZELLE. "DOES THE URORECTAL SEPTUM FUSE WITH THE CLOACAL MEMBRANE?" Journal of Urology 164, no. 6 (December 2000): 2070–72. http://dx.doi.org/10.1016/s0022-5347(05)66969-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Weber, A. Z., and C. Delacourt. "Mathematical Modelling of Cation Contamination in a Proton-exchange Membrane." Fuel Cells 8, no. 6 (December 2008): 459–65. http://dx.doi.org/10.1002/fuce.200800044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lebedeva, N. P., A. S. Booij, I. N. Voropaev, P. A. Simonov, and A. V. Romanenko. "Sibunit Carbon-Based Cathodes for Proton-Exchange-Membrane Fuel Cells." Fuel Cells 9, no. 4 (August 2009): 439–52. http://dx.doi.org/10.1002/fuce.200800180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wu, X., and K. Scott. "A H2SO4 Loaded Polybenzimidazole (PBI) Membrane for High Temperature PEMFC." Fuel Cells 12, no. 4 (May 23, 2012): 583–88. http://dx.doi.org/10.1002/fuce.201100145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Manolova, M., C. Schoeberl, R. Bretzler, and R. Freudenberger. "New Cathode Materials for the Anion Exchange Membrane Electrolyzer (AEM)." Fuel Cells 14, no. 5 (October 2014): 720–27. http://dx.doi.org/10.1002/fuce.201300228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gloukhovski, R., V. Freger, and Y. Tsur. "A Novel Composite Nafion/Anodized Aluminium Oxide Proton Exchange Membrane." Fuel Cells 16, no. 4 (April 22, 2016): 434–43. http://dx.doi.org/10.1002/fuce.201500166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Marrony, M., D. Beretta, S. Ginocchio, Y. Nedellec, S. Subianto, and D. J. Jones. "Lifetime Prediction Approach Applied to the Aquivion™ Short Side Chain Perfluorosulfonic Acid Ionomer Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cell Application." Fuel Cells 13, no. 6 (November 13, 2013): 1146–54. http://dx.doi.org/10.1002/fuce.201200230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Phillips, A., M. Ulsh, J. Mackay, T. Harris, N. Shrivastava, A. Chatterjee, J. Porter, and G. Bender. "The Effect of Membrane Casting Irregularities on Initial Fuel Cell Performance." Fuel Cells 20, no. 1 (January 24, 2020): 60–69. http://dx.doi.org/10.1002/fuce.201900149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Perrot, C., G. Meyer, L. Gonon, and G. Gebel. "Ageing Mechanisms of Proton Exchange Membrane Used in Fuel Cell Applications." Fuel Cells 6, no. 1 (February 2006): 10–15. http://dx.doi.org/10.1002/fuce.200500090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Silverman, T. J., J. P. Meyers, and J. J. Beaman. "Dynamic Thermal, Transport and Mechanical Model of Fuel Cell Membrane Swelling." Fuel Cells 11, no. 6 (November 7, 2011): 875–87. http://dx.doi.org/10.1002/fuce.201100025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wu, X., M. Mamlouk, and K. Scott. "A PBI-Sb0.2Sn0.8P2O7-H3PO4 Composite Membrane for Intermediate Temperature Fuel Cells." Fuel Cells 11, no. 5 (September 5, 2011): 620–25. http://dx.doi.org/10.1002/fuce.201100089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Thomas, A., G. Maranzana, S. Didierjean, J. Dillet, and O. Lottin. "Thermal Effect on Water Transport in Proton Exchange Membrane Fuel Cell." Fuel Cells 12, no. 2 (December 6, 2011): 212–24. http://dx.doi.org/10.1002/fuce.201100100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Patankar, K. A., D. A. Dillard, S. W. Case, M. W. Ellis, Y. H. Lai, and C. S. Gittleman. "Linear Hygrothermal Viscoelastic Characterization of Nafion NRE 211 Proton Exchange Membrane." Fuel Cells 12, no. 5 (August 8, 2012): 787–99. http://dx.doi.org/10.1002/fuce.201100134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Silva, R. E., F. Harel, S. Jemeï, R. Gouriveau, D. Hissel, L. Boulon, and K. Agbossou. "Proton Exchange Membrane Fuel Cell Operation and Degradation in Short-Circuit." Fuel Cells 14, no. 6 (September 15, 2014): 894–905. http://dx.doi.org/10.1002/fuce.201300216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shi, S., G. Chen, and X. Chen. "Thermo-mechanical Coupling Properties of Proton Exchange Membrane in Liquid Water." Fuel Cells 15, no. 3 (May 19, 2015): 472–78. http://dx.doi.org/10.1002/fuce.201400181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Alnegren, P., J. G. Grolig, J. Ekberg, G. Göransson, and J. E. Svensson. "Metallic Bipolar Plates for High Temperature Polymer Electrolyte Membrane Fuel Cells." Fuel Cells 16, no. 1 (October 29, 2015): 39–45. http://dx.doi.org/10.1002/fuce.201500068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rau, M., A. Niedergesäß, C. Cremers, S. Alfaro, T. Steenberg, and H. A. Hjuler. "Characterization of Membrane Electrode Assemblies for High-Temperature PEM Fuel Cells." Fuel Cells 16, no. 5 (July 12, 2016): 577–83. http://dx.doi.org/10.1002/fuce.201500105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Carello, M., A. De Vita, and A. Ferraris. "Method for Increasing the Humidity in Polymer Electrolyte Membrane Fuel Cell." Fuel Cells 16, no. 2 (February 1, 2016): 157–64. http://dx.doi.org/10.1002/fuce.201500110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Afsahi, F., F. Mathieu-Potvin, and S. Kaliaguine. "Impact of Ionomer Content on Proton Exchange Membrane Fuel Cell Performance." Fuel Cells 16, no. 1 (December 3, 2015): 107–25. http://dx.doi.org/10.1002/fuce.201500138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Liu, B., M. Y. Wei, L. F. Liu, and C. W. Wu. "Fatigue Life Analysis of the Proton Exchange Membrane Fuel Cell Stack." Fuel Cells 17, no. 5 (August 8, 2017): 682–89. http://dx.doi.org/10.1002/fuce.201600198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Whitaker, M., and K. Swann. "Lighting the fuse at fertilization." Development 117, no. 1 (January 1, 1993): 1–12. http://dx.doi.org/10.1242/dev.117.1.1.

Full text
Abstract:
In most deuterostome eggs, fertilization is marked by an abrupt and transient increase in intracellular calcium concentration. The transient takes the form of a propagating wave and is the signal for the onset of development. For those interested in cell signalling, the two obvious questions to ask are how the wave is initiated and how it propagates through the egg cytoplasm. Answers have come largely from experiments in frog, hamster, mouse and sea urchin eggs. One explanation of signal transduction at fertilization makes an analogy with transmembrane signalling in somatic cells, where a family of G-protein-linked receptors pass activating signals across the plasma membrane. Another, older idea is that it is the fusion of sperm and egg that is responsible for detonating the calcium explosion at fertilization. We discuss the relative merits of the two ideas. Both are plausible; the creative tension between them has led to experiments that broaden our view of signal transduction at fertilization.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, P. C., Y. T. Han, J. F. Shi, T. Li, H. Y. Wang, X. Y. Wang, and J. C. Sun. "ZrC Coating Modified Ti Bipolar Plate for Proton Exchange Membrane Fuel Cell." Fuel Cells 20, no. 5 (September 23, 2020): 540–46. http://dx.doi.org/10.1002/fuce.201900241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jannasch, P. "Fuel Cell Membrane Materials by Chemical Grafting of Aromatic Main-Chain Polymers." Fuel Cells 5, no. 2 (April 2005): 248–60. http://dx.doi.org/10.1002/fuce.200400051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hickner, M. A., and B. S. Pivovar. "The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties." Fuel Cells 5, no. 2 (April 2005): 213–29. http://dx.doi.org/10.1002/fuce.200400064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kerres, J. A. "Blended and Cross-Linked Ionomer Membranes for Application in Membrane Fuel Cells." Fuel Cells 5, no. 2 (April 2005): 230–47. http://dx.doi.org/10.1002/fuce.200400079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Uma, T., and M. Nogami. "A Novel Glass Membrane for Low Temperature H2/O2 Fuel Cell Electrolytes." Fuel Cells 7, no. 4 (August 2007): 279–84. http://dx.doi.org/10.1002/fuce.200700006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Munakata, H., K. Sasajima, and K. Kanamura. "3DOM Silica Composite Membrane Including Binary PAMPS-SPEES Polymer Electrolyte for DMFC." Fuel Cells 9, no. 3 (June 2009): 226–30. http://dx.doi.org/10.1002/fuce.200800084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tsushima, S., and S. Hirai. "Magnetic Resonance Imaging of Water in Operating Polymer Electrolyte Membrane Fuel Cells." Fuel Cells 9, no. 5 (October 2009): 506–17. http://dx.doi.org/10.1002/fuce.200800151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tsushima, S., and S. Hirai. "Magnetic Resonance Imaging of Water in Operating Polymer Electrolyte Membrane Fuel Cells." Fuel Cells 9, no. 5 (October 2009): 760. http://dx.doi.org/10.1002/fuce.200990016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Holber, M., P. Johansson, and P. Jacobsson. "Raman Spectroscopy of an Aged Low Temperature Polymer Electrolyte Fuel Cell Membrane." Fuel Cells 11, no. 3 (May 19, 2011): 459–64. http://dx.doi.org/10.1002/fuce.201100006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yi, P. Y., L. F. Peng, X. M. Lai, Z. Q. Lin, and J. Ni. "Performance Improvement of Wave-Like PEMFC Stack with Compound Membrane Electrode Assembly." Fuel Cells 12, no. 6 (November 8, 2012): 1019–26. http://dx.doi.org/10.1002/fuce.201200097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Guo, N., M. C. Leu, and U. O. Koylu. "Optimization of Parallel and Serpentine Configurations for Polymer Electrolyte Membrane Fuel Cells." Fuel Cells 14, no. 6 (October 8, 2014): 876–85. http://dx.doi.org/10.1002/fuce.201400127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Khalakhan, I., R. Fiala, J. Lavková, P. Kúš, A. Ostroverkh, M. Václavů, M. Vorokhta, I. Matolínová, and V. Matolín. "Candle Soot as Efficient Support for Proton Exchange Membrane Fuel Cell Catalyst." Fuel Cells 16, no. 5 (June 15, 2016): 652–55. http://dx.doi.org/10.1002/fuce.201600016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Niya, S. M. Rezaei, R. K. Phillips, and M. Hoorfar. "Sensitivity Analysis of the Impedance Characteristics of Proton Exchange Membrane Fuel Cells." Fuel Cells 16, no. 5 (July 15, 2016): 547–56. http://dx.doi.org/10.1002/fuce.201600060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Elsøe, K., M. R. Kraglund, L. Grahl-Madsen, G. G. Scherer, J. Hjelm, S. H. Jensen, T. Jacobsen, and M. B. Mogensen. "Noise Phenomena in Electrochemical Impedance Spectroscopy of Polymer Electrolyte Membrane Electrolysis Cells." Fuel Cells 18, no. 5 (July 11, 2018): 640–48. http://dx.doi.org/10.1002/fuce.201800005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Butenas, Saulius, Thomas Orfeo, Kathleen E. Brummel-Ziedins, and Kenneth G. Mann. "Membrane-Bound and Soluble Tissue Factor - Fuse and Fire Extinguisher." Blood 104, no. 11 (November 16, 2004): 123. http://dx.doi.org/10.1182/blood.v104.11.123.123.

Full text
Abstract:
Abstract A circulating form of tissue factor (TF) has been suggested to have an important role in clot growth, and a soluble TF protein lacking the transmembrane domain (sTF) has been described. We have evaluated the potential role of TF in contributing to clot growth using numerical, synthetic plasma and whole blood models. In these studies we differentiate the influence of membrane-bound (mbTF) and sTF218 on thrombin generation. In previous studies we have shown that thrombin generation consists of an initiation phase (IP), a propagation phase and a termination phase. During the IP, complex enzymes are assembled leading to the robust thrombin generation. Initiation with 5 pM mbTF in numerical simulations yields an IP of thrombin generation spanning ~240 s, a maximum rate of thrombin generation (vmax) of 2 nM/sec and a maximum level of active thrombin (IIamax) of 275 nM. No change in the IP and limited decreases in the vmax and IIamax are observed when the mbTF is electronically nullified 240 s after the initiation of the reaction. No thrombin generation is observed when mbTF is removed at 0 s or 10 s post initiation. In synthetic plasma −2 μM phospholipid and 5 pM mbTF- the IP is 240 s, vmax is 2.6 nM/s and IIamax is 300 nM. Quenching of TF activity at 240 s post initiation, accomplished using a mixture of monoclonal anti-TF and anti-factor VII(a) antibodies, has no effect on these parameters. No thrombin generation is observed over 840 s when antibodies are added to the reaction mixture at 0 s. Contact pathway-inhibited whole blood clotted in 253 s after the addition of 5 pM mbTF. This clotting time was only slightly extended by the addition of antibodies at 60–240 s after the initiation of the reaction. No clot was observed in 1000 s when antibodies were added to blood at 0 s. These data indicate that a functional, mbTF is essential for the initiation of thrombin generation but is not required for the propagation of the process during which factor X activation is largely governed by the factor VIIIa/factor IXa complex. We hypothesized that sTF218 should act as a competitive inhibitor by binding factor VIIa in an inactive complex and effectively decreasing the concentration of the mbTF/factor VIIa complex. In synthetic plasma −2 μM phospholipid and 5 pM mbTF-, the addition of 10 nM TF218 extends the IP by 120 s. A further increase in TF218 to 40 nM prolongs the IP by 220 s. No thrombin generation is observed in the absence of mbTF, with or without 100 nM TF218. The vmax and IIamax during the propagation phase are barely affected by the presence of 10–40 nM TF218 consistent with primary factor Xa generation by the factor VIIIa/factor IXa complex during this phase of the reaction. Similar results were obtained in numerical simulations using TF218 as a competitive inhibitor of factor VIIa/mbTF complex formation. These data indicate that sTF acts as an inhibitor of thrombin generation by inhibiting the formation of the mbTF/factor VIIa complex. Collectively our data identify mbTF as the “fuse” and sTF as the “extinguisher” of the “coagulation explosion”.
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Xiaoteng Terence, and Jochen Friedl. "High Temperature Polymer Electrolyte Membrane Fuel Cells - On the Way to Commercial Maturity." Fuel Cells 18, no. 2 (April 2018): 102. http://dx.doi.org/10.1002/fuce.201870022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cerri, Isotta, Angelika Heinzel, Petra Bele, and Olivier Bucheli. "High Temperature Polymer Electrolyte Membrane Fuel Cells - On the Way to Commercial Maturity." Fuel Cells 18, no. 5 (October 2018): 567. http://dx.doi.org/10.1002/fuce.201870052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, K., S. Laghrouche, and A. Djerdir. "Proton Exchange Membrane Fuel Cell Prognostics Using Genetic Algorithm and Extreme Learning Machine." Fuel Cells 20, no. 3 (April 21, 2020): 263–71. http://dx.doi.org/10.1002/fuce.201900085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pivac, I., and F. Barbir. "Impact of Shutdown Procedures on Recovery Phenomena of Proton Exchange Membrane Fuel Cells." Fuel Cells 20, no. 2 (April 2020): 185–95. http://dx.doi.org/10.1002/fuce.201900174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kamarudin, S. K., W. R. W. Daud, A. W. Mohammad, A. Md Som, and M. S. Takriff. "Design of a Tubular Ceramic Membrane for Gas Separation in a PEMFC System." Fuel Cells 3, no. 4 (December 2003): 189–98. http://dx.doi.org/10.1002/fuce.200330119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography